cho a,b,c dương và a+b+c=3
CMR: \(\sqrt{3a+\frac{1}{b}}+\sqrt{3b+\frac{1}{c}}+\sqrt{3c+\frac{1}{a}}\) ≥6
cho a , b , c là 3 số thực dương thỏa mãn a + 2b + 3c = 1 . Tìm max của biểu thức : \(P=\frac{6bc}{\sqrt{a+6bc}}+\frac{3ac}{\sqrt{2b+3ac}}+\frac{2ab}{\sqrt{3c+2ab}}\)
Cho a, b, c. CMR:
\(\sqrt[3]{\left(\frac{2a}{b+c}\right)^2}+\sqrt[3]{\left(\frac{2b}{c+a}\right)^2}+\sqrt[3]{\left(\frac{2c}{a+b}\right)^2}\ge3\)
\(\sqrt[4]{a^3}\)+\(\sqrt[4]{b^3}\)+\(\sqrt[4]{c^3}\)>2\(\sqrt{2}\)
biết a, b, c là các số dương
1.cho a^2-b^2=4c^2.CM: (5a-3b+8c)(5a-3b-8c)=(3a-5b)^2
2.cho a^2+b^2+c^2=2017. Tính M=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
cho a,b,c>0 thỏa mãn ab+bc+ca=3.cmr:
\(P=\frac{a^2b+b^2c+c^2a}{3}+\sqrt[3]{9\left(a+b+c\right)}\ge4\)
Cho a,b,c >0 và a=max{a,b,c} .Tìm gtnn của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
CM: a2\(\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
Tìm a,b,c biết
a+b+c=2\(\sqrt{a}\)+2\(\sqrt{b}\)-3 +2\(\sqrt{c}\)
( a cộng b cộng c bằng hai căn a ,cộng hai căng b trừ ba ,cộng hai căn c)