cho a,b,c dương và a+b+c=3
CMR: \(\sqrt{3a+\frac{1}{b}}+\sqrt{3b+\frac{1}{c}}+\sqrt{3c+\frac{1}{a}}\) ≥6
Cho a,b,c là ba số thực dương thỏa mãn a+b+c=3. CMR:
\(\sqrt[3]{3a+5b}+\sqrt[3]{3b+5c}+\sqrt[3]{3c+5a}\le6\)
Cho a, b, c. CMR:
\(\sqrt[3]{\left(\frac{2a}{b+c}\right)^2}+\sqrt[3]{\left(\frac{2b}{c+a}\right)^2}+\sqrt[3]{\left(\frac{2c}{a+b}\right)^2}\ge3\)
Cho các số thực a, b, c khác 0 thỏa mãn 2ab+bc+2ca=0. Tính giá trị của biểu thức:
\(A=\frac{bc}{8a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
cho a,b,c>0 thỏa mãn ab+bc+ca=3.cmr:
\(P=\frac{a^2b+b^2c+c^2a}{3}+\sqrt[3]{9\left(a+b+c\right)}\ge4\)
cho biểu thức P= \(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)với x>=0 và x # 1
a) rút gọn p
b) tìm x để p nguyên
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
Cho a,b,c >0 và a=max{a,b,c} .Tìm gtnn của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
tìm tập xác định của các hàm số :
a , \(y=\frac{\sqrt{3-x}+\sqrt{3+x}}{\left|x\right|-2}\)
b , \(y=\frac{\left|2x+1\right|-\sqrt{2}}{2x^2-3x+1}\)