tìm x
0,5x - 2/3x = 5/12
2)Tính:
a) (-2,5)x(-4)
b) (-2,5)x0,5x(-2)x2
c) (-0,5)x0,5x(-2)x2
d) 25x(-5)x(-0,4)x(-0,2)
\(\left(-2,5\right).\left(-4\right)=10\)
\(\left(-2,5\right).0,5.\left(-2\right).2=\left[\left(-2,5\right).\left(-2\right).\left(0,5.2\right)\right]=5.1=5\)
\(\left(-0,5\right).0,5.\left(-2\right).2=\left[\left(-0,5\right).\left(-2\right).\left(0,5.2\right)\right]=1.1=1\)
\(25.\left(-5\right).\left(-0,4\right).\left(-0,2\right)=\left[25.\left(-0,4\right).\left(-5\right).\left(-0,2\right)\right]=-10.1=-10\)
Tìm x biết :
a)(3x-3)+(x-2)=(2x-2)-(x-1).
b)(4x-3)+(3x+5)=3x-2.
c)(6x-8)-5(x+2)=2x-12.
d)(9x-2)-4(2x+5)=-12.
a)
<=> 3x - 3 + x - 2 = 2x - 2 - x + 1
<=> 3x + x - 2x + x = -2 + 1 + 3 + 2
<=> 3x = 4
<=> x = 4/3
Các câu sau làm tương tự
\(\left(3x-3\right)+\left(x-2\right)=\left(2x-2\right)-\left(x-1\right)\)
<=> \(3x-3+x-2=2x-2-x+1\)
<=> \(4x-5=x-1\)
<=> \(3x=4\)
<=> \(x=\frac{4}{3}\)
Vậy....
tìm x
a) 4(18-5x)-12(3x-7)=15(2x-16)-6(x+14)
b) 5(3x+5)-4(2x-3)=5x+3(2x+12)+1
c) 2(5x-8)-3(4x-5)=4(3x-4)+11
a) \(\Rightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow80x=480\Rightarrow x=6\)
b) \(\Rightarrow15x+25-8x+12=5x+6x+36+1\)
\(\Rightarrow4x=0\Rightarrow x=0\)
c) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
tìm x
a,x^3+3x^2=4x+12 b,49x^2=(3x+2)^2 c,3x^2(x-5)+12(5-x)=0 d,x^2(x-5)+45-9x=0
\(a,x^3+3x^2=4x+12\)
\(x^2\left(x+3\right)=4\left(x+3\right)\)
\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)
\(b,49x^2=\left(3x+2\right)^2\)
\(7x=3x+2\)
\(\Rightarrow7x-3x=2\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\frac{1}{2}\)
các câu còn lại tương tự nha
\(a,x^3+3x^2=4x+12\)
\(x^3+3x^2-4x-12=0\)
\(\Rightarrow x^2\left(x+3\right)-4\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\\left(x+2\right)\left(x-2\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)
\(b,49x^2=\left(3x+2\right)^2\)
\(\Rightarrow\left(7x\right)^2=\left(3x+2\right)^2\)
\(\Rightarrow7x=3x+2\)
\(\Rightarrow7x-3x=2\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\frac{1}{2}\)
\(c,3x^2\left(x-5\right)+12\left(5-x\right)=0\)
\(3x^2\left(x-5\right)-12\left(x-5\right)=0\)
\(\left(x-5\right)\left(3x^2-12\right)=0\)
\(\Rightarrow3.\left(x-5\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}}\)
\(d,x^2\left(x-5\right)+45-9x=0\)
\(x^2\left(x-5\right)+9\left(5-x\right)=0\)
\(x^2\left(x-5\right)-9\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
Tìm x biết :
a) 12 - 3x = 33
b) ( x + 1)(2 - x) - (3x + 5)(x + 2) = -4x2 + 2
a: \(\Leftrightarrow3x=-21\)
hay x=-7
tìm x biết
a, -5 (x^2 - 3x + 1 ) + x ( 1 +5x) = x-2
b,-4x ( x - 5 ) + 7x (x - 4 ) - 3x^ 2 = 12
Lời giải:
a.
PT $\Leftrightarrow -5x^2+15x-5+x+5x^2=x-2$
$\Leftrightarrow 16x-5=x-2$
$\Leftrightarrow 15x=3$
$\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}$
b.
PT $\Leftrightarrow -4x^2+20x+7x^2-28x-3x^2=12$
$\Leftrightarrow -8x=12$
$\Leftrightarrow x=\frac{-3}{2}$
Tìm số nguyên x
a)(2x+5)÷(2x+1)
b)(3x+5)÷(x+1)
c)(3x+8)÷(x-1)
d)(5x+12)÷(x-2)
e)(7x-12)÷(x+16)
a) \(\dfrac{2x+5}{2x+1}=\dfrac{2x+1+4}{2x+1}=\dfrac{2x+1}{2x+1}+\dfrac{4}{2x+1}=1+\dfrac{4}{2x+1}\)
Để \(\dfrac{2x+5}{2x+1}\in Z\) thì \(\dfrac{4}{2x+1}\in Z\)
\(\Rightarrow4\) ⋮ \(2x+1\)
\(\Rightarrow2x+1\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow2x\in\left\{0;-2;1;-3;3;-5\right\}\)
\(\Rightarrow x\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};\dfrac{3}{2};-\dfrac{5}{2}\right\}\)
Mà x nguyên \(\Rightarrow\text{x}\in\left\{0;-1\right\}\)
b) \(\dfrac{3x+5}{x+1}=\dfrac{3x+3+2}{x+1}=\dfrac{3\left(x+1\right)+2}{x+1}=\dfrac{3\left(x+1\right)}{x+1}+\dfrac{2}{x+1}=3+\dfrac{2}{x+1}\)
Để \(\dfrac{3x+5}{x+1}\in Z\) thì \(\dfrac{2}{x+1}\in Z\)
\(\Rightarrow2\) ⋮ \(x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3\right\}\)
c) \(\dfrac{3x+8}{x-1}=\dfrac{3x-3+11}{x-1}=\dfrac{3\left(x-1\right)+11}{x-1}=\dfrac{3\left(x-1\right)}{x-1}+\dfrac{11}{x-1}=3+\dfrac{11}{x-1}\)
Để: \(\dfrac{3x+8}{x-1}\in Z\) thì \(\dfrac{11}{x-1}\in Z\)
\(\Rightarrow11\) ⋮ \(x-1\)
\(\Rightarrow x-1\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow x\in\left\{2;0;12;-10\right\}\)
d) \(\dfrac{5x+12}{x-2}=\dfrac{5x-10+22}{x-2}=\dfrac{5\left(x-2\right)+22}{x-2}=\dfrac{5\left(x-2\right)}{x-2}+\dfrac{22}{x-2}=5+\dfrac{22}{x-2}\)
Để: \(\dfrac{5x+12}{x-2}\in Z\) thì \(\dfrac{22}{x-2}\in Z\)
\(\Rightarrow22\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(22\right)=\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
\(\Rightarrow x\in\left\{3;1;4;0;13;-9;24;-20\right\}\)
e) \(\dfrac{7x-12}{x+16}=\dfrac{7x+112-124}{x+16}=\dfrac{7\left(x+16\right)-124}{x+16}=\dfrac{7\left(x+16\right)}{x+16}-\dfrac{124}{x+16}=7-\dfrac{124}{x+16}\)
Để \(\dfrac{7x-12}{x+16}\in Z\) thì \(\dfrac{124}{x+16}\in Z\)
\(\Rightarrow124\) ⋮ \(x+16\)
\(\Rightarrow x+16\inƯ\left(124\right)=\left\{1;-1;2;-2;4;-4;31;-31;62;-62;124;-124\right\}\)
\(\Rightarrow x\in\left\{-15;-17;-14;-18;-12;-20;15;-47;46;-78;108;-140\right\}\)
Tìm số nguyên x thỏa mãn a)(2x+5)÷(2x+1) b)(3x+5)÷(x+1) c)(3x+8)÷(x-1) d)(5x+12)÷(x-2) e)(7x-12)÷(x+16)
Tìm x , biết : x ( 3x + 2 ) + ( x + 1 )2 – ( 2x – 5 )( 2x + 5 ) = – 12
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25+12=0\\ \Leftrightarrow4x+38=0\\ \Leftrightarrow x=-\dfrac{19}{2}\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\\ \Leftrightarrow4x=-38\Leftrightarrow x=-\dfrac{19}{2}\)