Chứng minh: \(a^2+b^2+1>ab+a+b\left(a\ge0,b\ge0\right)\)
Chứng minh: \(a^2b^2\left(a^2+b^2-2\right)-\left(a+b\right)\left(ab-1\right)\ge0\) với \(a,b\ge0\)
Chứng minh bất đẳng thức sau:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge18ab\) \(\left(a,b\ge0\right)\)
Áp dụng BĐT cosi:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)
Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)
Chứng minh rằng \(^{\left(a+b\right)^2-4ab\ge0}\)với mọi a,b
Chứng minh rằng \(a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\)\(a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
\(a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Chứng minh: \(a^3+b^3+c^3-3abc\ge0\) với a, b, c không âm bằng nhiều cách (dùng biến đổi tương đương)
Giải:
Cách 1: \(VT=\left(a+b+c\right)\left[\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2c\right)^2\right]\ge0\)
Cách 2: \(VT=\left(\sqrt{a^3}-\sqrt{b^3}\right)^2+\left(c-\sqrt{ab}\right)^2\left(c+2\sqrt{ab}\right)\ge0\)
Cách 3:\(VT=\frac{3c\left(a-b\right)^2\left(a^2+ab+b^2\right)^2}{\left(\sqrt[3]{16\left(a^3+b^3\right)^2}\right)^2+\left(\sqrt[3]{16\left(a^3+b^3\right)^2}\right)ab+4a^2b^2}+\left(c-\sqrt[3]{\frac{\left(a^3+b^3\right)}{2}}\right)^2\left(c+2\sqrt[3]{\frac{a^3+b^3}{2}}\right)\ge0\) P/s: Đừng để ý.
cả 1 màn hình , ko để ý sao đc =))
๖²⁴ʱ๖ۣۜNαтʂυƙĭ ๖ۣۜSυbαɾυ™ ༉ Test BĐT một tí thôi. Đừng để ý.
tí ăn cả đống nội quy thì vui nhể :>
Chứng minh \(4a\left(a+b\right)\left(a+1\right)\left(a+b+1\right)+b^2\ge0\)
Chứng minh \(4a\left(a+b\right)\left(a+1\right)\left(a+b+1\right)+b^2\ge0\)
Cho \(a\ge0,b\ge0,c\ge0\).Chứng minh rằng :
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ac}\)
Nhân từng vế bđt trên =>đpcm
\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)
\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)
\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)
\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)
\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)
\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)
chứng minh với a,b\(\ge0\)
thì: \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\)
\(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left[a+b+2\sqrt{ab}\right]^4\)
áp dụng BDT AM-GM
\(=>\left[a+b+2\sqrt{ab}\right]^4\ge\left[2\sqrt{\left(a+b\right)\left(2\sqrt{ab}\right)}\right]^4=64ab\left(a+b\right)^2\)
Cho \(a>b\ge0\)
Chứng minh rằng: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)