\(A=\frac{5n+1}{n+1}\)
(n #-1) .tìm n để A là số nguyên
Tính các giới hạn sau:
a) \(\lim \frac{{5n + 1}}{{2n}};\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}};\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right);\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}.\)
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 0\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\)
Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} = + \infty \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)
CMR: mọi n thuộc N ta có
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{\left(5v+1\right).\left(5n+6\right)}=\frac{n+1}{5n+6}\)
Chứng minh rằng với mọi n \(\in\) N ta luôn có:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{n+1}{5n+6}\)
Heo mi pờ lít
câu hỏi tương tự có đó bạn, bạn vào tham khảo nhe!
1) lim \(\frac{3n^2+5n+4}{2-n^2}\)
2) lim \(\frac{2n^3-4n^2+3n+7}{n^3-7n+5}\)
3) lim \(\left(\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1}\right)\)
4) lim \(\frac{1+3^n}{4+3^n}\)
5) lim \(\frac{4.3^n+7^{n+1}}{2.5^n+7^n}\)
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)
Đề thi hsg nè, ai giúp làm mik làm đi.
CMR với mọi số tự nhiên n thì ta luôn có:
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{n+1}{5n+6}\)
Ta có:\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}\)
\(=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{5n+6}\right)\)
\(=\frac{1}{5}.\left(\frac{5n+5}{5n+6}\right)=\frac{n+1}{5n+6}\left(\text{đ}pcm\right)\)
chứng minh rằng : với n thuộc N ; n>1
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+.....+\frac{3}{\left(5n-1\right)\left(5n+4\right)}<\frac{1}{15}\)
Dãy số nào sau đây có giới hạn bằng 0 ?
A. \(u_n=\frac{n^2-2}{5n+3n^2}\)
B. \(u_n=\frac{n^2-2n}{5n+3n^2}\)
C. \(u_n=\frac{1-2n}{5n+3n^2}\)
D. \(u_n=\frac{1-2n^2}{5n+3n^2}\)
\(\lim\limits\frac{1-2n}{5n+3n^2}=\lim\limits\frac{\frac{1}{n^2}-\frac{2}{n}}{\frac{5}{n}+3}=\frac{0}{3}=0\)
chứng minh rằng với mọi n thuộc N, n>= 2 thì
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)
Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )
chứng minh rằng với mọi n thuộc N và n>=2 thì
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+...+\frac{3}{\left(5n+1\right)\left(5n+4\right)}< \frac{1}{15}\)
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n+1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+....+\frac{5}{\left(5n+1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+....+\frac{1}{5n+1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(=\frac{1}{15}-\frac{3}{5\left(5n+4\right)}< \frac{1}{15}\) (đpcm)
chứng minh rằng với mọi n thuộc Z ta luôn \(\frac{1}{1.6}\)+ \(\frac{1}{6.11}\)+\(\frac{1}{11.16}\)+........+\(\frac{1}{\left(5n+1\right).\left(5n+6\right)}\)=\(\frac{n+1}{5n+6}\)
giúp mình đi sớm nhé