Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tan Tan Tan
Xem chi tiết
Gin Melkior
Xem chi tiết
Thảo Nguyên Xanh
21 tháng 3 2016 lúc 21:57

S=(-1/7)0+(-1/7)1+...+(-1/7)2007

-1/7.S=(-1/7)1+(-1/7)2+...+(-1/7)2008

-1/7.S-S=[(-1/7)1+(-1/7)2+...+(-1/7)2008]-[(-1/7)0+(-1/7)1+...+(-1/7)2007]

-8/7.S=(-1/7)2008-(-1/7)0

-8/7.S=(1/7)2008-1

.........................

Minh Thư
Xem chi tiết
Monkey D Luffy
Xem chi tiết
locdss9
10 tháng 4 2018 lúc 16:02

https://hoc24.vn/hoi-dap/question/266859.html

WW
Xem chi tiết
Ái Nữ
25 tháng 12 2017 lúc 9:56

S= \(\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\)

\(\left(-\dfrac{1}{7}\right)S=\left(-\dfrac{1}{7}\right)\left(-\dfrac{1}{7}+-\dfrac{1^2}{7}+..+-\dfrac{1^{2007}}{7}\right)\)

= \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\)

=>\(-\dfrac{1}{7}S-S=\) \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\) \(-\)\(\left(1+-\dfrac{1}{7}+-\dfrac{1^2}{7}+...+-\dfrac{1^{2007}}{7}\right)\)

=> \(-\dfrac{1}{7}S=\) \(\dfrac{-1^{2008}}{7}-1\)

=> S= \(\dfrac{-1^{2008}}{7}-1\) : \(\dfrac{-1}{7}\)

An Nguyễn Bá
Xem chi tiết
Ngọc Thái
3 tháng 1 2017 lúc 20:34

S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007

=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006

=>(7-1)S=6-(1/7)^2007

=>S=1-(-1/7^2007/6)

Nguyễn Thị Hồng Nhung
3 tháng 1 2017 lúc 20:35

1/7S=(-1/7)^1+...+(-1/7)2018

1/7S-S=(-1/7)^1+....+(-1/7)^2018-(-1/7)^0-...-(-1/7)^2017

-6/7S=(-1/7)^2018-1=(-1/7)^2018-1:-6/7

An Nguyễn Bá
1 tháng 1 2017 lúc 19:50

Nguyễn Huy Thắng giải giúp mjnk bài này vs

Nguyễn Như Quỳnh
Xem chi tiết
Người iu JK
17 tháng 1 2017 lúc 20:42

S=(−1/7)^0+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007

7S = 1+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007

=> 7S = 7+(−1/7)^1+(−1/7)^2+...+(−1/7)^2006

=> 6S = 6-(−1/7)^2007

=> S= 1-(−1/7^2007/6)

Đỗ Đức Long
Xem chi tiết
Thành Công
19 tháng 2 2020 lúc 20:36

S=(−1/7)^0+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007

7S = 1+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007

=> 7S = 7+(−1/7)^1+(−1/7)^2+...+(−1/7)^2006

=> 6S = 6-(−1/7)^2007

=> S= 1-(−1/7^2007/6)

Khách vãng lai đã xóa
dovinh
19 tháng 2 2020 lúc 21:14

\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\\ \Rightarrow7S=7+\left(-1\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2006}\\ \Rightarrow7S-S=\left[7+\left(-1\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2006}\right]-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\\ =7-\left(-\frac{1}{7}\right)-\left(-\frac{1}{7}\right)^{2007}\\ =\frac{50}{7}-\left(-\frac{1}{7}\right)^{2007}\\ \Rightarrow S=\frac{\frac{50}{7}-\left(-\frac{1}{7}\right)^{2007}}{6}\)

Khách vãng lai đã xóa
Trần Nguyễn Đình Dương
Xem chi tiết
Nguyễn Việt Hoàng
17 tháng 3 2016 lúc 20:40

S=1-1/7-(1/7)^3-......-(1/7)^2017

49S=49-7-1/7-(1/7)^3-.,.....-(1/7)^2015

49S-S=48S=49-7-1-(1/7)^2017

48S=41-(1/7)^2017

S=41/48-(1/7)^2017/48

k nha