S= \(\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\)
\(\left(-\dfrac{1}{7}\right)S=\left(-\dfrac{1}{7}\right)\left(-\dfrac{1}{7}+-\dfrac{1^2}{7}+..+-\dfrac{1^{2007}}{7}\right)\)
= \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\)
=>\(-\dfrac{1}{7}S-S=\) \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\) \(-\)\(\left(1+-\dfrac{1}{7}+-\dfrac{1^2}{7}+...+-\dfrac{1^{2007}}{7}\right)\)
=> \(-\dfrac{1}{7}S=\) \(\dfrac{-1^{2008}}{7}-1\)
=> S= \(\dfrac{-1^{2008}}{7}-1\) : \(\dfrac{-1}{7}\)