S=(−1/7)^0+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
7S = 1+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
=> 7S = 7+(−1/7)^1+(−1/7)^2+...+(−1/7)^2006
=> 6S = 6-(−1/7)^2007
=> S= 1-(−1/7^2007/6)
S=(−1/7)^0+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
7S = 1+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
=> 7S = 7+(−1/7)^1+(−1/7)^2+...+(−1/7)^2006
=> 6S = 6-(−1/7)^2007
=> S= 1-(−1/7^2007/6)
1, Tính
\(A=\left(-3+\frac{3}{4}-\frac{1}{3}\right):\left(5+\frac{2}{5}-\frac{2}{3}\right)\)
\(B=\left(\frac{3}{5}-\frac{4}{15}\right).\left(\frac{2}{7}-\frac{3}{14}\right)-\left(\frac{5}{9}-\frac{7}{27}\right).\left(1-\frac{3}{5}\right)+\left(1-\frac{11}{12}\right).\left(1+\frac{11}{12}\right)\)
Tính
a. \(\frac{\left(13\frac{1}{4}-2\frac{5}{7}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
B= \(\left[\left(0,1\right)^2\right]^0\) +\(\left[\left(\frac{1}{7}\right)^{-1}\right]^2\) .\(\frac{1}{49}.\left[\left(2^2\right)^3.2^5\right]\)
\(\left(2\frac{1}{3}+3\frac{1}{2}\right):\left(x+3\frac{1}{7}\right)+7\frac{1}{2}=1\frac{69}{86}\)tìmx
Tính \(E=\left[\frac{1\frac{11}{31}.4\frac{3}{7}-\left(15-6\frac{1}{3}.\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}.\left(-1\frac{14}{93}\right)\right].\frac{31}{50}\)
Rút gọn
B=\(4.\left(\frac{-1}{2}\right)^3:\left(\frac{4}{5}\right)^0.\frac{1}{2}-\frac{\frac{3}{5}-\frac{3}{9}+\frac{3}{13}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{13}}\)
Giải chi tiết nha
giải hộ milk bài này nha
\(\frac{\left(13\frac{1}{4}-2\frac{5}{7}-10\frac{5}{6}\right)\times230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right)\div\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
giải hộ milk nha cảm ơn rất nhiều
Tính :
a) \(\frac{\left(\frac{-5}{7}\right)^n}{\left(\frac{-5}{7}\right)^{n-1}}\)( n\(\ge\)1 )
b) \(\frac{\frac{-1}{2}^{2n}}{\left(\frac{-1}{2}\right)^n}\) ( n \(\in\)N )
CMR:\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^2}< 1\)