(-2 121) : 3 =
Tính tổng A biết A=(121-2^2)*(121-3^2)*...*(121-2011^2)
Tính :
(121 - 12).(121 - 22).(121 - 32)...(121 - 112)
ta có
(121-12).(121-22).....(121-112)
= (112-12).(112-22).....(112-112)
= (121-12).(112-22).....0
= 0
B=(121-12) x (121-22) x (121-32) ... x (121-292)
\(B=\left(11^2-1^2\right)×...×\left(11^2-11^2\right)×...×\left(11^2-29^2\right)\)
\(B=0\)
Tìm số tự nhiên thỏa mãn: .
`(3*x+2)^2=121`
\(=>\left[{}\begin{matrix}3x+2=11\\3x+2=-11\end{matrix}\right.\\ =>\left[{}\begin{matrix}3x=11-2\\3x=-11-2\end{matrix}\right.\\ =>\left[{}\begin{matrix}3x=9\\3x=-13\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\dfrac{13}{3}\left(loại\right)\end{matrix}\right.\)
`(3x+2)^2=121`
`=>( 3x+2)^2= +-11^2`
\(\Rightarrow\left[{}\begin{matrix}3x+2=11\\3x+2=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=9\\3x=-13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{13}{3}\end{matrix}\right.\)
(121-12).(121-22).(121.23).....(121-292)
Tính kết quả
(121-1^2)*(121-2^2)*...*(121-11^2)*...*(121-29^2)=(121-1^2)*(121-2^2)*...*(121-121)*...*(121-29^2)=(121-1^2)*(121-2^2)*...*0*...*(121-29^2)=0
Tìm số tự nhiên thỏa mãn: .
Lời giải:
$(3x+2)^2=121=11^2=(-11)^2$
$\Rightarrow 3x+2=11$ hoặc $3x+2=-11$
$\Rightarrow x=3$ hoặc $x=\frac{-13}{3}$
Vì $x$ là số tự nhiên nên $x=3$
(3/5+17/3):121/19+(-17/3+2/5):121/19 = ?
\(\left(\frac{3}{5}+\frac{17}{3}\right):\frac{121}{19}+\left(\frac{-17}{3}+\frac{2}{5}\right):\frac{121}{19}\)
\(=\left(\frac{3}{5}+\frac{17}{3}\right).\frac{19}{121}+\left(\frac{-17}{3}+\frac{2}{5}\right).\frac{19}{121}\)
\(=\frac{19}{121}.\left[\left(\frac{3}{5}+\frac{17}{3}\right)+\left(\frac{-17}{3}+\frac{2}{5}\right)\right]\)
\(=\frac{19}{121}.\left[\frac{3}{5}+\frac{17}{3}+\left(\frac{-17}{3}\right)+\frac{2}{5}\right]\)
\(=\frac{19}{121}.\left[\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{-17}{3}+\frac{17}{3}\right)\right]\)
\(=\frac{19}{121}.\left[1+0\right]\)
\(=\frac{19}{121}.1\)
\(=\frac{19}{121}\)
Tính giá trị biểu thức
A= (121-22) (121-32) ... (121-20112)
Tìm 2 số nguyên a, b biết a>0 và a.(b-2)=3
A=(121-22)(121-32)...(121-112)...(121-20112)
A=(121-22)(121-32)...0...(121-20112)
A=0
Tìm số tự nhiên xx thỏa mãn: \left(3.x+2\right)^{2}=121(3.x+2)2=121
bn ghi như rứa mk ko hiểu
Tìm số tự nhiên xx thỏa mãn: \left(3.x+2\right)^{2}=121(3.x+2)2=121
Tính tổng:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
Tổng quát:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow S=\dfrac{10}{11}\)
Ta có công thức tổng quát như sau:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right]\left[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right]}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)
\(=\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\)
Áp dụng vào tổng S ta có:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(S=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}+\dfrac{1}{\sqrt{121}}\)
\(S=1-\dfrac{1}{\sqrt{121}}=1-\dfrac{1}{11}=\dfrac{10}{11}\)