Giá trị lớn nhất:
S=\(\sqrt{x-2}+\sqrt{y-4}\)
Biết x+y=56
giá trị lớn nhất của \(S=\sqrt{x-2}+\sqrt{y-4}\)biết x+y=56
Tìm giá trị lớn nhất, giá trị lớn nhất của hàm số (nếu có)
a, \(y=\sqrt{x^2+x-2}\)
b, \(y=\sqrt{2+x}+\sqrt{4-x}\)
c, \(y=x+\sqrt{4-x^2}\)
Lời giải:
a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)
Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.
$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học
$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)
Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$
$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky
$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$
Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$
c. ĐKXĐ: $-2\leq x\leq 2$
$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky
$\Leftrightarrow y^2\leq 8$
$\Leftrightarrow y\leq 2\sqrt{2}$
Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$
Mặt khác:
$x\geq -2$
$\sqrt{4-x^2}\geq 0$
$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$
BT1: Tìm Giá trị lớn nhất
A= \(\sqrt{x-1}+\sqrt{y-2}\) biết x+y = 4
B= \(\sqrt{x-4}+\sqrt{y-3}\) biết x+y=15
C= \(\frac{\sqrt{x-9}}{5x}\)
BT2: Tìm Giá trị nhỏ nhất
A= \(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}\)
Cho các số thực dương x,y thuộc (0;1). Tìm giá trị lớn nhất của biểu thức: \(P=\sqrt{x}+\sqrt{y}+\sqrt[4]{12}\sqrt{x.\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
Đặt \(\left\{{}\begin{matrix}x=sina\\y=sinb\end{matrix}\right.\) với \(a;b\in\left(0;\dfrac{\pi}{2}\right)\)
\(P=\sqrt{sina}+\sqrt{sinb}+\sqrt[4]{12}.\sqrt{sina.cosb+cosa.sinb}\)
\(P\le\sqrt{2\left(sina+sinb\right)}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}\)
Do \(sina+sinb=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}\le2sin\dfrac{a+b}{2}\)
\(\Rightarrow P\le2\sqrt{sin\dfrac{a+b}{2}}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}=2\sqrt{sint}+\sqrt[4]{12}.\sqrt{sin2t}\)
\(\Rightarrow\dfrac{P}{\sqrt{2}}\le\sqrt{2sint}+\sqrt{\sqrt{3}.sin2t}\Rightarrow\dfrac{P^2}{4}\le2sint+\sqrt{3}sin2t\)
\(\Rightarrow\dfrac{P^2}{8}\le sint\left(1+\sqrt{3}cost\right)\Rightarrow\dfrac{P^4}{64}\le sin^2t\left(1+\sqrt{3}cost\right)^2\le2sin^2t\left(1+3cos^2t\right)\)
\(\Leftrightarrow\dfrac{P^4}{128}\le sin^2t\left(4-3sin^2t\right)=-3sin^4t+4sin^2t\)
\(\Leftrightarrow\dfrac{P^4}{128}\le-3\left(sin^2t-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\le\dfrac{4}{3}\)
\(\Rightarrow P\le4.\sqrt[4]{\dfrac{2}{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(sint=\sqrt{\dfrac{2}{3}}\)
giá trị nhỏ nhất của biểu thức P=\(\sqrt{x-2}\)+\(\sqrt{y-4}\) .Biết x+y=56
căn(x-2)+căn(y-4)>=(x-2+1)/2+(y-4+1)/2=(x-1+y-3)/2=26
tìm giá trị lớn nhất \(\sqrt{x-3}+\sqrt{y-4}\)biết x+y=8
Gọi \(A=\sqrt{x-3}+\sqrt{y-4}\)
Ta có : \(A^2=x-3+y-4=2\sqrt{\left(x-3\right)\left(y-4\right)}=x+y-7+2\sqrt{2\left(x-3\right)\left(y-4\right)}\)
\(=1+2\sqrt{\left(x-3\right)\left(y-4\right)}\)
Theo AM - GM ta có : \(2\sqrt{\left(x-3\right)\left(y-4\right)}\le x-3+y-4=x+y-7=8-7=1\)
\(\Rightarrow A^2\le1+1=2\Rightarrow A\le\sqrt{2}\)Có GTLN là \(\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=y-4\Leftrightarrow\hept{\begin{cases}x-y=-1\\x+y=8\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}}}\)
Gọi M,m lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y=\(\sqrt{1+x}+\sqrt{1-x}\). Giá trị của M+m là
A.4 B.2+\(\sqrt{2}\) C.4+\(\sqrt{2}\) D.2
1) giá trị lớn nhất của hàm số \(y=-\sqrt{x-2}+\sqrt{4-x}\)
2)GTLN của hàm số \(y=\dfrac{1}{4}x^2-x-\sqrt{4x-x^2}\)
đang cần gấp ạ
tìm giá trị lớn nhất của S=\(\sqrt{x-1}\) +\(\sqrt{y-2}\)biết x+y=4
x+y=4 nên xảy ra các trường hợp là x=0,y=4 ; x=1,y=3 ; x=2,y=2 ; x=3,y=1 ; x=4,y=0
TH1: x=0,y=4
=>\(\sqrt{-1}\)+\(\sqrt{2}\)thì ko có chuyện đó
TH2: x=1,y=3
=>\(\sqrt{0}\)+\(\sqrt{1}\)bằng 1
TH3:x=2,y=2
=>\(\sqrt{1}\)+\(\sqrt{0}\)bằng 1
TH4:x=3,y=1 bằng 1 bạn tự tính
TH5: x=4,y=0 thì cũng ko có chuyện đó
Vậy tổng S lớn nhất là 1.
k mình nhé hơi thủ công
Tại mình giải theo kiểu lớp 6 và ... bấm máy tính bạn ah
\(\hept{\begin{cases}\sqrt{x-1}>=0\\\sqrt{y-2}>=0\end{cases}}\)
\(=>\hept{\begin{cases}x-1>=0\\y-2>=0\end{cases}}\)
\(=>\)Chỉ còn 2 trường hợp
TH1:\(\hept{\begin{cases}x=2\\y=2\end{cases}}\)
\(< =>S=\sqrt{2-1}+\sqrt{2-2}\)
\(< =>S=1\)
TH2:\(\hept{\begin{cases}x=1\\y=3\end{cases}}\)
\(=>S=\sqrt{1-1}+\sqrt{3-2}\)
\(=>S=1\)
Vậy GTLN của S=1, Khi x=2,y=2 hoặc x=1,y=3
Ủa đề có yêu cầu \(x,y\)nguyên không mà các bạn giải kiểu đó?
\(S=\sqrt{x-1}+\sqrt{2-x}\le\sqrt{\frac{x-1+2-x}{2}}=\sqrt{\frac{1}{2}}\)
Đẳng thức xảy ra khi \(x=\frac{3}{2}\)