Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thế Sơn
Xem chi tiết
huỳnh thị ngọc ngân
30 tháng 7 2018 lúc 11:31

CM: \(\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot39}{21\cdot22\cdot23\cdot\cdot\cdot40}=\dfrac{1}{2^{20}}\)

Biến đổi vế trái:

\(\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot39}{21\cdot22\cdot23\cdot\cdot\cdot40}=\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot19}{22\cdot24\cdot26\cdot\cdot\cdot40}\)

\(=\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot19}{2\cdot11\cdot2^3\cdot3\cdot2\cdot13\cdot2^2\cdot7\cdot2\cdot15\cdot2^5\cdot2\cdot17\cdot2^2\cdot9\cdot2\cdot19\cdot2^3\cdot5}\)

\(=\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot19}{\left(3\cdot5\cdot7\cdot\cdot\cdot19\right)2^{20}}\)

\(=\dfrac{1}{2^{20}}\)

Ruby Sweety
Xem chi tiết
Nguyễn Thị Đoan Trang
Xem chi tiết
Ta Vít
Xem chi tiết
Đinh Tuấn Việt
18 tháng 5 2015 lúc 15:33

Nhân cả tử và mẫu của phân số \(\frac{1.3.5...39}{21.22.23...40}\) ta được:

\(\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}=\frac{1.2.3...39.40}{21.22.23...40.\left[\left(1.2\right).\left(2.2\right)....\left(2.20\right)\right]}\)

\(=\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{30}}=\frac{1.2.3...39.40}{1.2.3...20.21....40.2^{20}}=\frac{1}{2^{20}}\)

Suy ra điều phải chứng minh.

Đinh Tuấn Việt
18 tháng 5 2015 lúc 15:35

Úi nhầm ở chỗ kia phải là 220

soyeon_Tiểu bàng giải
Xem chi tiết
Nguyễn Anh Kim Hân
3 tháng 7 2016 lúc 11:27

Nhân cả tử và mẫu với 2.4.6.....40, ta được:

\(\frac{1.3.5.....39}{21.22.23.....40}=\frac{\left(1.3.5.....39\right)\left(2.4.6.....40\right)}{\left(21.22.23.....40\right)\left(1.2.3.....20\right).2^{20}}=\frac{1}{2^{20}}\left(đpcm\right)\)

Vậy \(\frac{1.3.5.....39}{21.22.23.....40}\)=\(\frac{1}{2^{20}}\)

Nguyễn Thị Quỳnh
Xem chi tiết
Đặng Phương Thảo
27 tháng 7 2015 lúc 13:12

Nhân cả từ và mẫu với 2 . 4 . 6 ... 40 ta được:

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right)\left(2.4.6...40\right)}{\left(21.22.23...40\right)\left(2.4.6...40\right)}=\frac{1.2.3.4...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{20}}=\frac{1}{2^{20}}\)(đpcm)

Vậy \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)

Nguyễn Thái Hoàng
10 tháng 3 2016 lúc 17:49

sao lai phai nhan voi 2..4..6..40

Bùi Minh Mạnh Trà
13 tháng 4 2016 lúc 15:00

nhan thêm ma

Mai Đức Đạt
Xem chi tiết
Vũ Tuấn Hưng
23 tháng 2 2017 lúc 20:50

Ta có:\(\frac{1.3.5......39}{21.22.23........4}=\frac{1.3.5....39.2.4.6...40}{21.22.23......40.2.4.6.....40}\)

=\(\frac{40!}{21.22....40\left(1.2.3....20\right).2^{20}}\)

=\(\frac{40!}{40!2^{20}}=\frac{1}{2^{20}}\)

Tào Tháo Đường
Xem chi tiết
Nguyễn Ngọc Lộc
26 tháng 2 2020 lúc 9:50

Ta có : \(U=\frac{1.3...39}{21.22...40}\)

=> \(U=\frac{1.3...39.\left(2.4...40\right)}{21.22...40.\left(2.4.6...40\right)}\)

=> \(U=\frac{1.2.3...39.40}{21.22...40.\left(1.2...20\right).2^{20}}\)

=> \(U=\frac{1}{2^{20}}\)

- Ta thấy : \(2^{20}>2^{20}-1\)

=> \(\frac{1}{2^{20}}< \frac{1}{2^{20}-1}\)

hay \(U< V\)

Vậy U < V .

Khách vãng lai đã xóa
Nguyễn Thảo Chi
Xem chi tiết