x2 -xy = 6x - 5y - 8
Tìm x,y nguyên, biết x2-xy=6x-5y-8
Pt\(\Leftrightarrow\)\(y\left(x-5\right)=x^2-6x+8\)
\(\Leftrightarrow y=\dfrac{x^2-6x+8}{x-5}=\dfrac{x\left(x-5\right)-\left(x-5\right)+3}{x-5}=x-1+\dfrac{3}{x-5}\)
Để y nguyên \(3⋮x-5\) \(\Leftrightarrow x-5\inƯ\left(3\right)\)
\(\Rightarrow x\in\left\{2;3;4;6;7;8\right\}\)
Vậy Pt có cặp nghiệm (x,y)={(2;-2),{4;0),(6;8),(8,8)}
a) Cho x+y=9,xy=18 tính x3+y3, x4+y4,x3-y3
b)Cho x+y = -9 ,tính A= x2+2xy+y2-6x-5y-5
Lời giải:
a.
$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=[9^2-2.18]^2-2.18^2=1377$
Nếu $x\geq y$ thì:
$x^3-y^3=(x-y)(x^2+xy+y^2)$
$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$
$=\sqrt{9^2-4.18}(9^2-18)=189$
Nếu $x< y$ thì $x^3-y^3=-189$
b.
$A=(x+y)^2-6(x+y)+y-5$
$=(-9)^2-6(-9)+y-5=130+y$
Chưa đủ cơ sở để tính biểu thức.
a) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=9^3-3\cdot18\cdot9=243\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)
\(=\left(9^2-2\cdot18\right)^2-2\cdot18^2\)
\(=45^2-2\cdot324\)
=1377
Tìm nghiệm nguyên của phương trình: \(x^2-xy=6x-5y-8\)
Biện pháp tu từ được sử dụng trong câu "sương vô tình đậu trên mắt rưng rưng" là sự lặp lại âm tiết "rưng rưng". Tác dụng của biện pháp này là tạo ra hiệu ứng âm thanh đặc biệt, tăng cường tính hài hòa và nhấn mạnh sự mơ hồ, mờ ảo của cảnh tượng mà câu muốn diễn tả. Ngoài ra, biện pháp tu từ còn giúp tạo ra sự nhấn mạnh, tăng cường tính cảm xúc và sự chú ý của người đọc đối với câu. có đúng khum thì ko bít nữa nhớ tick ạ
Đặt y = x + k (với k \(\inℤ\))
Khi đó ta được x2 - xy = 6x - 5y - 8
<=> x2 - x(x + k) = 6x - 5(x + k) - 8
<=> xk + x - 5k - 8 = 0
<=> (k + 1)(x - 5) = 3
Lập bảng ta có :
x - 5 | 1 | 3 | -1 | -3 |
k + 1 | 3 | 1 | -3 | -1 |
x | 6 | 8 | 4 | 2 |
k | 2 | 0 | -4 | -2 |
mà y = x + k
nên ta được các cặp (x;y) thỏa là (6 ; 8) ; (8;8) ; (4 ; 0) ; (2;0)
a) 5x-5y+ax-ay b) ax+ay+bx+by c) x2+x+ax+a
d) x2y+xy2+xy2-3x-3y e) x2y+xy-x-1 f) x2+2x-2x-4
g) x2+6x-y2+9 h) x2-y2+10x+25 i) x2-8x-24y2+16
\(a,=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\\ b,=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\\ c,=x\left(x+1\right)+a\left(x+1\right)=\left(x+a\right)\left(x+1\right)\\ d,Sửa:x^2y+xy^2-3x-3y=xy\left(x+y\right)-3\left(x+y\right)=\left(xy-3\right)\left(x+y\right)\\ e,=xy\left(x+1\right)-\left(x+1\right)=\left(xy-1\right)\left(x+1\right)\\ f,=x^2-4=\left(x-2\right)\left(x+2\right)\\ g,=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\\ h,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ i,=\left(x-4\right)^2-24y^2=\left(x-2\sqrt{6}y-4\right)\left(x+2\sqrt{6}y+4\right)\)
cho x,y nguyen thoa man x^2-xy=6x-5y-8
Ta có: \(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow x\left(x-6\right)+8=y\left(x-5\right)\)
\(\Leftrightarrow y=\frac{x\left(x-6\right)+8}{x-5}\varepsilon Z\Rightarrow x\left(x-6\right)+8⋮x-5\Leftrightarrow x^2-6x+8⋮x-5\)
\(\Leftrightarrow x^2-25-6\left(x-5\right)+3⋮x-5\Leftrightarrow\left(x-5\right)\left(x+5\right)-6\left(x-5\right)+3⋮x-5\Rightarrow\left(x-5\right)\varepsilonƯ\left(3\right)\)
Từ đó tính được x, y mình ngại tính bạn tự tính nhé !!
Tim x,y nguyen :
x^2 - xy - 6x + 5y = -8
tìm các số nguyên x, y sao cho : x^2-xy=6x-5y-8
\(x^2-xy=6x-5y-8\)
\(\Rightarrow x^2-xy-6x+5y+8=0\)
\(\Rightarrow\left(x^2-xy-x\right)-\left(5x-5y-5\right)+3=0\)
\(\Rightarrow x\left(x-y-1\right)-5\left(x-y-1\right)=-3\)
\(\Rightarrow\left(x-y-5\right)\left(x-1\right)=-3\)
Từ đó bạn tìm ước thì ra kết quả.Chúc bạn học tốt.
đặt \(x-y=k\)
\(x^2-xy=6x-5y-8\Rightarrow x\left(x-y\right)=x+\left(5x-5y\right)-8\Rightarrow xk=x+5\left(x-y\right)-8\)
\(\Rightarrow xk=x+5k-8\Rightarrow xk=x+5k-5-3\Rightarrow xk-x-5k+5=-3\)
\(\Rightarrow x\left(k-1\right)-5\left(k-1\right)=3\Rightarrow\left(x-5\right)\left(k-1\right)=3\Rightarrow x-5;k-1\inƯ\left(-3\right)=+-1;+-3\)
nếu \(x-5=1\Rightarrow x=6\)thì \(k-1=-3\Rightarrow k=-2\Rightarrow y=x-k=6-\left(-2\right)=8\)
nếu \(x-5=3\Rightarrow x=8\)thì \(k-1=-1\Rightarrow k=0\Rightarrow y=x-k=8-0=8\)
nếu \(x-5=-1\Rightarrow x=4\)thì \(k-1=3\Rightarrow k=4\Rightarrow y=x-k=4-4==0\)
nếu \(x-5=-3\Rightarrow x=2\)thì \(k-1=1\Rightarrow k=2\Rightarrow y=x-k=2-2=0\)
vậy (x;y)=(6;8) (8;8) (4;0) (2;0)
tìm cặp số nguyên x y thỏa mãn x mũ 2+xy bằng 6x -5y -8
Để tìm cặp số nguyên (x, y) thỏa mãn phương trình x^2 + xy = 6x - 5y - 8, chúng ta có thể sử dụng phương pháp giải đồng dư.
Đầu tiên, ta sẽ chuyển phương trình về dạng tương đương: x^2 + xy - 6x + 5y + 8 = 0.
Tiếp theo, ta sẽ tìm các giá trị của x sao cho đa thức trên là một đa thức bậc hai trong y. Để làm điều này, ta sẽ sử dụng công thức giải đa thức bậc hai:
y = (-b ± √(b^2 - 4ac))/(2a)
Ở đây, a = 1, b = x - 6 và c = x^2 - 5x - 8. Thay các giá trị này vào công thức, ta có:
y = (-(x - 6) ± √((x - 6)^2 - 4(x^2 - 5x - 8)))/(2(1))
y = (-x + 6 ± √(x^2 - 12x + 36 - 4x^2 + 20x + 32))/(2)
y = (-x + 6 ± √(-3x^2 + 8x + 68))/(2)
Bây giờ, ta sẽ kiểm tra các giá trị của x từ -100 đến 100 (hoặc bất kỳ phạm vi nào khác mà bạn muốn) và tìm các giá trị tương ứng của y để xem có cặp số nguyên (x, y) nào thỏa mãn phương trình ban đầu không.
Chú ý rằng trong phương trình ban đầu, ta chỉ quan tâm đến các giá trị nguyên của x và y. Do đó, chúng ta có thể sử dụng một vòng lặp để kiểm tra các giá trị này.
Dưới đây là một ví dụ về mã Python để tìm các cặp số nguyên (x, y) thỏa mãn phương trình:
for x in range(-100, 101): discriminant = -3*x**2 + 8*x + 68 if discriminant >= 0 and discriminant % 4 == 0: y1 = (-x + 6 + discriminant**0.5) / 2 y2 = (-x + 6 - discriminant**0.5) / 2 if y1.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y1)})") if y2.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y2)})")Kết quả sẽ hiển thị các cặp số nguyên (x, y) thỏa mãn phương trình ban đầu.
Tính giá trị của biểu thức A = x 2 – 5x + xy – 5y tại x = -5; y = -8
A. 130
B. 120
C. 140
D. 150
A = x 2 – 5x + xy – 5y = ( x 2 + xy) – (5x + 5y) = x(x + y) – 5(x + y)
= (x – 5)(x + y)
Tại x = -5; y = -8 ta có
A = (-5 – 5)(-5 – 8) = (-10)(-13) = 130
Đáp án cần chọn là: A