Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Tường Vân
Xem chi tiết
Nguyễn An Ninh
7 tháng 5 2023 lúc 17:10

Ta có:2019>4
=>2019/2020+2020/2021+2021/2022+2019>4
=>a>4(dpcm)

Sơn Nguyễn Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2023 lúc 14:53

Tham khảo:

loading...

hiha
Xem chi tiết
Dinh Manh Linh
11 tháng 1 2023 lúc 21:44

Ta có: 1+2-3-4+5+6-7-8+.....-2019-2020+2021+2022

=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022

=1+0+0+.....+0+2022

=2023

Hải Hưng Trần Hoàng
Xem chi tiết
Nguyễn Thị Thương Hoài
11 tháng 12 2023 lúc 13:20

  S        =  5 + 52 + 53 +...+ 52020 + 52021

5S        = 52+ 53 + 54 +...+ 52021 + 52022

5S-S =(52 + 53 + 54 + ... + 52021 + 52022)-(5 + 52 + 53 + ... + 52021)

4S   = 52 + 53 + 54 +...+ 52021 + 52022 - 5 - 52 - 53 - ...- 52021

4S   = (52 - 52)+(53- 53)+(54 - 54) + ... +(52021 - 52021)+(52022 - 5)

4S   = 52022 - 5

4S + 5 = 52022 - 5 + 5

4S + 5 = 52022  (đpcm)

 

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 11 2021 lúc 9:38

\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)

lce-cream
Xem chi tiết
*•.¸♡Bค๔✿B๏ץ ♡¸.•*
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2021 lúc 22:57

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

Akai Haruma
16 tháng 11 2021 lúc 0:41

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.

Akai Haruma
16 tháng 11 2021 lúc 0:42

Bài 2:

$1+2+3+...+n=1275$

$\frac{n(n+1)}{2}=1275$

$n(n+1)=2.1275=2550$

$n(n+1)=50.51$

$\Rightarrow n=50$

Vân Vũ Mỹ
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
19 tháng 10 2023 lúc 20:15

`#3107.101107`

\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)

\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)

\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)

\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)

\(= 3(2 + 2^3 + ... + 2^{2021})\)

Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)

`\Rightarrow A \vdots 3`

Vậy, `A \vdots 3.`

Võ Lê Bảo Ngọc
Xem chi tiết
Hòa Phương Anh 30.08
6 tháng 12 2023 lúc 21:23

  S= 5+52+53+...+52020+52021

 5S=52+53+54+...+52021+52022

 5S - S=4S=52022-5

  Ta có: 4S+5=52022

             =4S -5 +5 =52022

              => 4S=52022