chứng tỏ rằng:√2022-√2019>√2021-√2020
Help mình nha
Cho A = \(\dfrac{2019}{2020}\)+\(\dfrac{2020}{2021}\)+\(\dfrac{2021}{2022}\)+\(\dfrac{2022}{2019}\). Chứng tỏ A > 4
Giúp với ạ!!
Ta có:2019>4
=>2019/2020+2020/2021+2021/2022+2019>4
=>a>4(dpcm)
so sánh P=2019/2020+2020/2021+2021/2022 và Q=2019+2020+2021/2020+2021+2022
1+2-3-4+5+6-7-8-....-2019-2020+2021+2022 help
Ta có: 1+2-3-4+5+6-7-8+.....-2019-2020+2021+2022
=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022
=1+0+0+.....+0+2022
=2023
s= 5 +5^2+5^3+...+5^2020+5^2021. Chứng tỏ rằng 4.S+5=5^2022
S = 5 + 52 + 53 +...+ 52020 + 52021
5S = 52+ 53 + 54 +...+ 52021 + 52022
5S-S =(52 + 53 + 54 + ... + 52021 + 52022)-(5 + 52 + 53 + ... + 52021)
4S = 52 + 53 + 54 +...+ 52021 + 52022 - 5 - 52 - 53 - ...- 52021
4S = (52 - 52)+(53- 53)+(54 - 54) + ... +(52021 - 52021)+(52022 - 5)
4S = 52022 - 5
4S + 5 = 52022 - 5 + 5
4S + 5 = 52022 (đpcm)
Cho a,b>0: \(a^{2019}+b^{2019}=a^{2020}+b^{2020}=a^{2021}+b^{2021}\)
Tính \(P=2022-\left(a+b-ab\right)^{2022}\)
\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)
Cho a, b, c là các số nguyên thỏa mãn a\(^{2019}+b^{2020}+c^{2021}\) là bội của 6. Chứng minh rằng: a\(^{2021}+b^{2022}+c^{2023}\) cũng là bội của 6.
1) Cho A = 6 ^ 2020 + 6 ^ 2021 + 6 ^ 2022 + 6 ^ 2023 . Chứng tỏ rằng: A chia hết cho 7
2) Tìm số tự nhiên n, biết 1+2+3+...+n=1275 .
Các bạn giúp mình câu này với mình cần gấp
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.
Bài 2:
$1+2+3+...+n=1275$
$\frac{n(n+1)}{2}=1275$
$n(n+1)=2.1275=2550$
$n(n+1)=50.51$
$\Rightarrow n=50$
CHo A=2+2 mũ2+2 mũ3+.....+2 mũ 2020+2 mũ 2021+ 2 mũ 2022 Chứng tỏ rằng A chia hết cho 3
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`
cho S= 5+5 mũ 2+ 5 mũ 3+......+5 mũ 2020+ 5 mũ 2021. Chứng tỏ rằng 4*S+5=5 mũ 2022
S= 5+52+53+...+52020+52021
5S=52+53+54+...+52021+52022
5S - S=4S=52022-5
Ta có: 4S+5=52022
=4S -5 +5 =52022
=> 4S=52022