Câu 3. Cho tam giác ABC có AB = AC. Gọi E là trung điểm của cạnh BC
a. Chứng minh ΔAEB = ΔAEC
b. Chứng minh rằng AE là tia phân giác của góc BAC.
a) Vẽ tam giác ABC có BC = 2cm, AB = AC = 3cm
b) Gọi E là trung điểm của cạnh BC của tam giác ABC trong câu a). Chứng minh rằng AE là tia phân giác của góc BAC ?
b) Xét tam giác ABE và tam giác ACE có :
AB=AC
BE=CE
AE chung
=> tam giác ABE=tam giác ACE (C-C-C)
=> Â1=Â2 (2 góc tương ứng)
=> AE là tia phân giác của góc BAC
\(\Delta BAE=\Delta CAE\left(c.c.c\right)\) suy ra \(\widehat{BAE}=\widehat{CAE}\)
a)vẽ tam giác ABC có BC=2cm, AB=AC=3cm
b) gọi E là trung điểm của cạnh BC ở ΔABC trong câu a). Chứng minh rằng AE là tia phân giác của góc BAC
Giải:
Xét \(\Delta ABE,\Delta ACE\) có:
AB = AC ( gt )
AI: cạnh chung
\(BE=EC\left(=\frac{1}{2}BC\right)\)
\(\Rightarrow\Delta ABE=\Delta ACE\left(c-c-c\right)\)
\(\Rightarrow\widehat{BAE}=\widehat{CAE}\) ( hai góc tương ứng )
\(\Rightarrow\) AE là tia phân giác của \(\widehat{BAC}\)
Cho tam giác ABC có góc B = 90 độ, AB=1/2 AC Kẻ tia phân giác AE của góc A ( E thuộc BC ), D là trung điểm của AC.
a/ chứng minh ED vuông góc AC
b/ Chứng minh EA=AC
c/ tính các góc BAC và BCA của tam giác ABC
GIÚP EM CÂU C
c: Xét ΔBAC vuông tại B có
\(\sin C=\dfrac{AB}{AC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{BAC}=60^0\)
Vẽ tam giác ABC có BC = 4 cm, AB = AC = 5 cm. Gọi E là trung điểm của cạnh BC của tam giác ABC. Chứng minh AE là tia phân giác của góc BAC.
Xét tam giác AEB và AEC có
\(\left\{{}\begin{matrix}AB=AC\\BE=EC\\AE.chung\end{matrix}\right.\Rightarrow\Delta AEB=\Delta AEC\left(c.c.c\right)\\ \Rightarrow\widehat{BAE}=\widehat{CAE}\)
Vậy ...
Cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE a) Chứng minh rằng BE = CD b) Gọi O là giao điểm của BE và CD, chứng minh ao là tia phân giác của góc bac
a: Xét ΔABE và ΔACD có
AB=AC
\(\stackrel\frown{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
a) Vẽ tam giác ABC có BC=2cm, AB=AC=3cm
b) Gọi E là trung điểm của BC của tam giác ABC trong câu a. Chứng minh rằng AE là tia phân giác của góc BAC
Bài làm
Vì E là trung điểm của BC
=> EB=EC=\(\frac{2}{2}=1\)cm
Xét tam gíc ABE và tam giác ACE
Ta có: AC=AC ( gt )
BE=EC ( chứng minh trên )
AE là cạnh chung
=> tam giác ABE= tam giác ACE ( c.c.c )
Vì tam giác ABE bằng tam giác ACE ( chứng minh trên )
=> BE=EC ( chứng minh trên )
AE là cạnh chung
=> \(\widehat{BAE}=\widehat{EAC}\)
=> AE là tia phân giác của góc \(\widehat{BAC}\) (đpcm)
# Chúc bạn học tốt #
~ Mik lm quen vs dạng này nhiều rồi, nên k sợ sai đâu. ~
cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho AD=AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh rằng ΔBOD = ΔCOE
c) Chứng minh: AO là tia phân giác của góc BAC
Cho tam giác ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Kẻ tia Ax là tia phân giác góc BAC, tia này cắt BD tại H
a) Chứng minh H là trung điểm của cạnh BD
b) Trên tia AB lấy điểm E sao cho AE=AC. Gọi F là giao điểm của Ax và BC. Chứng minh: ba điểm D,E,F cùng nằm trên một đường thẳng.
a) Xét tam giác ABD: AB = AD (gt).
=> Tam giác ABD cân tại A.
Mà AH là phân giác góc BAD (gt).
=> AH là trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của cạnh BD (đpcm).
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
Cho tam giác ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Kẻ tia Ax là tia phân giác góc BAC, tia này cắt BD tại H
a) Chứng minh H là trung điểm của cạnh BD
b) Trên tia AB lấy điểm E sao cho AE=AC. Gọi F là giao điểm của Ax và BC. Chứng minh: ba điểm D,E,F cùng nằm trên một đường thẳng.
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng