cho a,b là số thực dương a+2b=3.cm a√(b+2) + b√(a+2) + b√(b+2) ≤3√3
cho a,b,c là các số thực dương thỏa mãn a^2+b^2+c^2=3
cm 1/(1+a^2b^2) +1/(1+b^2c^2) +1/(1+c^2a^2) >=9/(2a+2b+2c)
mong các thầy cô giúp em giải bài này với ạ
Cho 3 số thực dương a,b,c. CM: \(\frac{a^2}{2b+c}+\frac{b^2}{2c+a}+\frac{c^2}{2a+b}\ge\frac{a+b+c}{3}\)
Áp dụng BĐT Svác ta có:
\(\frac{a^2}{2b+c}+\frac{b^2}{2c+a}+\frac{c^2}{2a+b}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\)
Cho các số thực dương a,b. CM BĐT ;
\(\dfrac{a^2b}{2a^3+b^3}+\dfrac{2}{3}\ge\dfrac{a^2+2ab}{2a^2+b^2}\)
cho a,b là các số thực dương. cm rằng:
\(\left(a+b\right)^2+\dfrac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
\((a+b)^2+\frac{a+b}{2}=(a+b)[(a+b)+\frac{1}{2}]\)
\(=(a+b)[(a+\frac{1}{4})+(b+\frac{1}{4})]\geq 2\sqrt{ab}(\sqrt{a}+\sqrt{b})=2a\sqrt{b}+2b\sqrt{a}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{4}$
Cho a,b là các số thực dương >1 thỏa mãn \(\log_ab=3\). Tính \(P=\log_{a^2b}a^3-3\log_{a^2}2.\log_4\left(\dfrac{a}{b}\right)\)
\(P=3log_{a^2b}a-\dfrac{3}{4}log_a2.log_2\left(\dfrac{a}{b}\right)\)
\(=\dfrac{3}{log_a\left(a^2b\right)}-\dfrac{3}{4.log_2a}.\left(log_2a-log_2b\right)\)
\(=\dfrac{3}{log_aa^2+log_ab}-\dfrac{3}{4.log_2a}.log_2a+\dfrac{3}{4}.\dfrac{log_2b}{log_2a}\)
\(=\dfrac{3}{2+3}-\dfrac{3}{4}+\dfrac{3}{4}.log_ab=\dfrac{3}{5}-\dfrac{3}{4}+\dfrac{9}{4}=\dfrac{21}{10}\)
Cho a,b là các số thực dương thỏa mãn a + 2b <3. CM \(\sqrt{a+3}+2\sqrt{b+3}< 6\)
bunyakovsky:
\(\left(\sqrt{a+3}+\sqrt{2}.\sqrt{2b+6}\right)^2\le\left(1+2\right)\left(a+2b+9\right)< 3.12=36\)
\(\Rightarrow0< \sqrt{a+3}+2\sqrt{b+3}< 6\)
Cho a,b là các số thực dương thỏa mãn a^2+2ab+2b^2-2b=8
1,CMR 0<a+b< hoặc = 3
2,Tìm min P=a+b+8/a+2/b
cho a b c là các số dương thỏa mãn a^2+2b^2<=3c^2. cm 1/a+2/b>=3/c
Cho các số thực dương a,b,c. CM: \(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{a+c+2b}}\sqrt{\frac{c}{a+b+2c}}\le\frac{3}{2}\)