Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quandung Le
Xem chi tiết
zZz Cool Kid_new zZz
10 tháng 10 2019 lúc 22:14

Áp dụng BĐT Svác ta có:

\(\frac{a^2}{2b+c}+\frac{b^2}{2c+a}+\frac{c^2}{2a+b}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\)

tôn thiện trường
Xem chi tiết
tôn thiện trường
21 tháng 10 2018 lúc 20:34

mong các thầy cô giúp em giải bài này với ạ

Võ Thị Kim Dung
Xem chi tiết
Hạ Mặc Tịch
Xem chi tiết
Akai Haruma
13 tháng 5 2021 lúc 21:51

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

\((a+b)^2+\frac{a+b}{2}=(a+b)[(a+b)+\frac{1}{2}]\)

\(=(a+b)[(a+\frac{1}{4})+(b+\frac{1}{4})]\geq 2\sqrt{ab}(\sqrt{a}+\sqrt{b})=2a\sqrt{b}+2b\sqrt{a}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{4}$

Ngưu Kim
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2024 lúc 6:09

\(P=3log_{a^2b}a-\dfrac{3}{4}log_a2.log_2\left(\dfrac{a}{b}\right)\)

\(=\dfrac{3}{log_a\left(a^2b\right)}-\dfrac{3}{4.log_2a}.\left(log_2a-log_2b\right)\)

\(=\dfrac{3}{log_aa^2+log_ab}-\dfrac{3}{4.log_2a}.log_2a+\dfrac{3}{4}.\dfrac{log_2b}{log_2a}\)

\(=\dfrac{3}{2+3}-\dfrac{3}{4}+\dfrac{3}{4}.log_ab=\dfrac{3}{5}-\dfrac{3}{4}+\dfrac{9}{4}=\dfrac{21}{10}\)

Hà Thảo
Xem chi tiết
Neet
4 tháng 5 2017 lúc 20:38

bunyakovsky:

\(\left(\sqrt{a+3}+\sqrt{2}.\sqrt{2b+6}\right)^2\le\left(1+2\right)\left(a+2b+9\right)< 3.12=36\)

\(\Rightarrow0< \sqrt{a+3}+2\sqrt{b+3}< 6\)

Phạm Quốc Học
Xem chi tiết
Quách Minh Hưng
Xem chi tiết
Thị Hương Đoàn
Xem chi tiết