\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
B=\(\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20}+2\sqrt{43}+24\sqrt{3}\)
\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
\(=\left(2\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)^2-8\sqrt{20+2\sqrt{\left(4+3\sqrt{3}\right)^2}}\)
\(=\left(3\sqrt{3}+4\right)^2-8\sqrt{20+2\left(4+3\sqrt{3}\right)}\)
\(=\left(3\sqrt{3}+4\right)^2-8\sqrt{28+6\sqrt{3}}\)
\(=\left(3\sqrt{3}+4\right)^2-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)
\(=43+24\sqrt{3}-8\left(3\sqrt{3}+1\right)=35\)
Tính \(D=\left(13-4\sqrt{3}\right).\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
\(D=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
\(=\left(2\sqrt{3}-1\right)^2\left(\sqrt{3}+2\right)^2-8\sqrt{20+2\left(3\sqrt{3}+4\right)}\)
\(=\left(4+3\sqrt{3}\right)^2-8\sqrt{28+6\sqrt{3}}\)\(=\left(4+3\sqrt{3}\right)^2-8\left(3\sqrt{3}+1\right)\)
\(=43+24\sqrt{3}-24\sqrt{3}-8=35\)
Thu gọn biểu thức
\(A=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
Các bạn giúp mình với
\(A=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\) \(A=\left(6+7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{\left(16+2.4.3\sqrt{3}+27\right)}}\)
\(A=6\left(7+4\sqrt{3}\right)+\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{\left(4+3\sqrt{3}\right)^2}}\)Trong căn là hằng đẳng thức (a+b)^2
\(A=42+24\sqrt{3}+7^2-\left(4\sqrt{3}\right)^2-8\sqrt{20+2\left(4+3\sqrt{3}\right)}\) sử dụng hằng đẳng thức a^2 -b^2\(A=43+24\sqrt{3}-8\sqrt{20+8+2.3\sqrt{3}}\)
\(A=43+24\sqrt{3}-8\sqrt{1+2.3\sqrt{3}+27}\)trong căn tiếp tục là hằng đẳng thức (a+b)^2\(A=43+24\sqrt{3}-8\sqrt{\left(1+3\sqrt{3}\right)^2}\)
\(A=43+24\sqrt{3}-8\left(1+3\sqrt{3}\right)\)
\(A=35\)
chúc bạn thành công nhé
Mk đang cần rất gấp bạn nào giải đúng mk tick cho
Thu gọn biểu thức sau
\(A=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
\(A=43+24\sqrt{3}-8\sqrt{20+2\sqrt{\left(3\sqrt{3}+4\right)^2}}\)
\(=43+24\sqrt{3}-8\sqrt{20+2\left(3\sqrt{3}+4\right)}\)
\(=43+24\sqrt{3}-8\sqrt{28+6\sqrt{3}}\)
\(=43+24\sqrt{3}-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)
\(=43+24\sqrt{3}-8\left(3\sqrt{3}+1\right)\)
\(=43-8=35\)
Rút gọn
\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{x-4}\) (x\(\ge\)0, x \(\ne\) 4)
\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
Rút gọn
\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{x-4}\) (x\(\ge\)0, x \(\ne\) 4)
\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-4}+\frac{\sqrt{x}-10}{x-4}\)
\(A=\frac{x+2\sqrt{x}+x-3\sqrt{x}+2+\sqrt{x}-10}{x-4}\)
\(A=\frac{2x-8}{x-4}=\frac{2\left(x-4\right)}{x-4}=2\)
\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{\left(3\sqrt{3}+4\right)^2}}\)
\(B=43+24\sqrt{3}-8\sqrt{20+6\sqrt{3}+8}\)
\(B=43+24\sqrt{3}-8\sqrt{28+6\sqrt{3}}\)
\(B=43+24\sqrt{3}-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)
\(B=43+24\sqrt{3}-24\sqrt{3}-8\)
\(B=35\)
Giải các phương trình sau :
a) \(\left(\dfrac{13}{24}\right)^{3x+7}=\left(\dfrac{24}{13}\right)^{2x+3}\)
b) \(\left(4-\sqrt{15}\right)^{\tan x}+\left(4+\sqrt{15}\right)^{\tan x}=8\)
c) \(\left(\sqrt[3]{6+\sqrt{15}}\right)^x+\left(\sqrt[3]{7-\sqrt{15}}\right)^x=13\)
1/ Cho biểu thức
\(P=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)với x>0, x\(\ne\)1
a) CMR: P=\(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b) Tìm các giá trị của x để 2P=\(2\sqrt{5}+5\)
2/ Thu gọn biểu thức sau:
A= \(\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
B= \(\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
giúp mình với ạ
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)
1/ Cho biểu thức
\(P=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)với x>0, x\(\ne\)1
a) CMR: P=\(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b) Tìm các giá trị của x để 2P=\(2\sqrt{5}+5\)
2/ Thu gọn biểu thức sau:
A= \(\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
B= \(\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
giúp mình với ạ
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)