Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 6 2017 lúc 6:44

Điều kiện y ≠ 0

Hệ phương trình tương đương với x + y + x y = 7    ( 1 ) x x y + 1 = 12    ( 2 )

Từ (1) và x, y là số nguyên nên y là ước của x

Từ (2) ta có x là ước của 12

Vậy có duy nhất một nghiệm nguyên x = 3, y = 1 nên xy = 3

Đáp án cần chọn là: C

Lâm hà thu
Xem chi tiết
Ben 10
14 tháng 9 2017 lúc 21:09

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

Nguyễn Văn Thành
14 tháng 9 2017 lúc 21:10

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

Nguyễn An
Xem chi tiết
Trên con đường thành côn...
30 tháng 7 2021 lúc 21:16

undefined

Phía sau một cô gái
30 tháng 7 2021 lúc 21:16

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2019 lúc 16:37

Đáp án A

y − 1 x 2 + 2 y − 1 x + 2 y − 1 = 0 1  

Nếu y = 1  thì   x = 1

Nếu y ≠ 1  thì để (1) có nghiệm thì

Δ = 2 y − 1 2 + 4 y − 1 2 y − 1 ≥ 0 ⇔ 2 y − 1 3 − 2 y ≥ 0 ⇔ 1 2 ≤ y ≤ 3 2

⇒ min y = 1 2 ; max y = 3 2 ⇒ min y + max y = 2  

võ dương thu hà
Xem chi tiết
Bách Ngọc
Xem chi tiết
Phạm thị Mỹ Hằng
Xem chi tiết
Akai Haruma
18 tháng 3 2021 lúc 2:02

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2018 lúc 5:58



Ịman
Xem chi tiết
em ơi
Xem chi tiết
santa
25 tháng 12 2020 lúc 21:18

\(xy-x+y=4\)

\(\Leftrightarrow x\left(y-1\right)+y-1=3\)

\(\Leftrightarrow\left(x+1\right)\left(y-1\right)=3\)

Kẻ bảng :

x+11-13-3 
y-13-31-1 
x0-22-4 
y4-200 
KLtmtmtmtm 

Vậy ...

p/s: check lại hộ tui nhá =)))