Cho phân số A=n+1/n-3
a}Tìm n để A có giá trị nguyên
b}Tìm n để A là phân số tối giản
cho phân số A=n-5/n+1 (n thuộc Z ; n khác 1)
a) Tìm n để A có giá trị nguyên
b) Tìm n để A là phân số tối giản
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
A =\(\dfrac{n+2}{n+1}\) với n \(\ne\) 3
a, tìm n để A là số nguyên
b, chứng minh A là phân số tối giản
a) Để A là số nguyên thì \(n+2⋮n+1\)
\(\Leftrightarrow n+1+1⋮n+1\)
mà \(n+1⋮n+1\)
nên \(1⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(1\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)(thỏa ĐK)
Vậy: \(n\in\left\{0;-2\right\}\)
b) Gọi d\(\in\)ƯC(n+2;n+1)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮d\\n+1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+2;n+1\right)=1\)
hay A là phân số tối giản(Đpcm)
cho phân số a = n+1/n-3 (nϵz; n≠ 3)
a) Tìm n để A có giá trị nguyên
b) tìm n để A là phân số tối giản
Cho phân số A = n + 9 / n-6 (n ; n > 6)
a) Tìm các giá trị của n để phân số có giá trị là số tự nhiên.
b) Tìm các giá trị của n để A là phân số tối giản.
a: Để A là số tự nhiên thì n-6+15 chia hết cho n-6
=>\(n-6\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
mà n>6
nên \(n\in\left\{7;9;11;21\right\}\)
b: \(A=\dfrac{n-6+15}{n-6}=1+\dfrac{15}{n-6}\)
Để A là phân số tối giản thì ƯCLN(n-9;n-6)=1
=>ƯCLN(15;n-6)=1
=>n-6<>3k và n-6<>5k
=>\(n\notin\left\{3k+6;5k+6\right\}\)
a)Tìm tất cả các số nguyên n để phân số n+1/n-2 có giá trị là một số nguyên
b)
Tìm số nguyên n để phân số 4n+5/2n-1 có giá trị là một số nguyên
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
1) tìm n sao cho phân số tối giản:
12n+1 / 30n+2
2) cho phân số:
n+19/n+6 ( n E N )
a) tìm giá trị n sao cho phân số có giá trị là số tự nhiên
b) tìm giá trị của n để phân số tối giản
Cho phân số A= \(\dfrac{2n+3}{4n+1}\) ( \(n\in Z\) )
a) Tìm n để A= \(\dfrac{13}{21}\)
b) Tìm tất cả các giá trị của n để A có giá trị là phân số tối giản
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
Cho phân số A = n-5 trên n+1 (n thộc Z, n khác -1)
a, tìm n để A có giá trị là số nguyên
b, tìm n để A là phân số tối giản