Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh An Trần
Xem chi tiết
Linh An Trần
Xem chi tiết
Nguyễn Lê Diệu Linh
26 tháng 11 2017 lúc 20:09

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

Nguyễn Nam
29 tháng 11 2017 lúc 19:38

1) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^2x^2\left(z-x\right)\)

\(=\left(y^2z^3-x^3y^2\right)-\left(y^3z^2-x^2y^3\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(z^3-x^3\right)-y^3\left(z^2-x^2\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(z^2+zx+x^2\right)-y^3\left(z-x\right)\left(z+x\right)-z^2x^2\left(z-x\right)\)

\(=\left(z-x\right)\left[y^2\left(z^2+zx+x^2\right)-y^3\left(z+x\right)-z^2x^2\right]\)

\(=\left(z-x\right)\left[\left(y^2z^2+xy^2z+x^2y^2\right)-\left(y^3z+xy^3\right)-z^2x^2\right]\)

\(=\left(z-x\right)\left(y^2z^2+xy^2z+x^2y^2-y^3z-xy^3-z^2x^2\right)\)

\(=\left(z-x\right)\left[\left(y^2z^2-y^3z\right)-\left(x^2z^2-x^2y^2\right)+\left(xy^2z-xy^3\right)\right]\)

\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z^2-y^2\right)+xy^2\left(z-y\right)\right]\)

\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z-y\right)\left(z+y\right)+xy^2\left(z-y\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[y^2z-x^2\left(z+y\right)+xy^2\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y^2z-x^2z-x^2y+xy^2\right)\)

\(=\left(z-x\right)\left(z-y\right)\left[\left(y^2z-x^2z\right)-\left(x^2y-xy^2\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[z\left(y^2-x^2\right)-xy\left(x-y\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[z\left(y-x\right)\left(y+x\right)+xy\left(y-x\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left[z\left(y+x\right)+xy\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left(yz+xz+xy\right)\)

Nguyễn Nam
29 tháng 11 2017 lúc 20:03

2) \(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)

\(=xyz-xy-yz-xz+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-y-x+1\right)\)

\(=\left(z-1\right)\left[\left(xy-y\right)-\left(x-1\right)\right]\)

\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)

NGUYỄN BÍCH HẢI
Xem chi tiết
The Angry
30 tháng 10 2020 lúc 9:08

Với \(y^2=zx;z^2=xy\)và ĐK : \(x+y-z=1\), ta có : \(y\cdot y=z\cdot x;z\cdot z=x\cdot y\)và ĐK : \(x+y-z-1=0\).

Với \(x+y-z-1=0\), coi \(1=a\), và chỉ khi \(x+y-z=a\)thì \(x+y-z-a=0\)( vì \(a=1\))

\(x+y-z-a=0\Rightarrow x+y-\left(z+a\right)\Rightarrow x+y=z+a\)(ĐK : \(y^2=zx;z^2=xy;x+y-z=a\))

Vậy thỏa mãn \(x=y=z=1\).

Khách vãng lai đã xóa
le thi thu huyen
Xem chi tiết
Tuấn Anh Phạm
8 tháng 8 2017 lúc 23:06

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

Phương Anh Võ Thị
Xem chi tiết
Trần Anh tuấn
Xem chi tiết
Thắng Nguyễn
27 tháng 5 2018 lúc 22:07

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2019 lúc 5:50

Đáp án D

Ta có C 12 1 . C 10 1 = 120

Khi đó  C 12 1 . C 10 1 = 120   . Đặt C 12 1 . C 10 1 = 120

Ta luôn có C 12 1 . C 10 1 = 120

C 12 1 . C 10 1 = 120  Suy ra C 12 1 . C 10 1 = 120

Xét hàm số  f t = t 2 − 8 t + 3   trên khoảng − 1 ; + ∞ ,có f ' t = 2 t + 1 2 t + 4 t + 3 2 > 0 ; ∀ t > − 1

Hàm số f(t)  liên tục trên − 1 ; + ∞ ⇒ f t đồng biến trên − 1 ; + ∞

Do đó, giá trị nhỏ nhất của f(t)  là min − 1 ; + ∞ f t = f − 1 = − 3 . Vậy  P min = − 3

Em Không Biết
Xem chi tiết
Akai Haruma
30 tháng 7 2023 lúc 16:33

Lời giải:
Theo bài ra ta có:

$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$

$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$

Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$

$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:

$3x^2-y^2+z^2=876$

$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$

$\Rightarrow 219k^2=876$

$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$

Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$

Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$

Đào Thanh Huyền
Xem chi tiết