Từ x + y = 2 => x = 2 - y thay vào xy - z2 = 1
Ta có: \(\left(2-y\right)y-z^2=1\)
<=> \(z^2+y^2-2y+1=0\)
<=> \(z ^2+\left(y-1\right)^2=0\)
<=> \(\left\{{}\begin{matrix}z=0\\y=1\end{matrix}\right.\) => x = 2 - 1 = 1
Vậy x = y = 1 và z = 0
Từ x + y = 2 => x = 2 - y thay vào xy - z2 = 1
Ta có: \(\left(2-y\right)y-z^2=1\)
<=> \(z^2+y^2-2y+1=0\)
<=> \(z ^2+\left(y-1\right)^2=0\)
<=> \(\left\{{}\begin{matrix}z=0\\y=1\end{matrix}\right.\) => x = 2 - 1 = 1
Vậy x = y = 1 và z = 0
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=1
CMR: \(\frac{3}{xy+z+zx}+\frac{2}{x^2+y^2+z^2}>14\)
Cho x, y, z là 3 số dương thỏa mãn xy + yz + zx = 3. Chứng minh rằng:
\(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(z+x\right)}+\frac{1}{1+z^2\left(x+y\right)}\le\frac{1}{xyz}\)
Cho 3 số dương x,y,z có tổng bằng 1.CMR\(\sqrt{\frac{xy}{xy+z}}+\sqrt{\frac{yz}{yz+x}}+\sqrt{\frac{zx}{zx+y}}\le\frac{3}{2}\)
cho x,y,z >0 và x+y+z=3
chứng minh : A = \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+z\text{x}+x^2}\ge3\sqrt{3}\)
Cho ba số thực dương x,y,z. Tính GTNN \(P=\dfrac{1}{2}\left(x^2+y^2+z^2\right)+\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{z}{xy}\)
Cho x,y,z>0 tm\(xy+yz+zx\ge3\). C/m
\(\dfrac{x^3}{\sqrt{y^2+3}}+\dfrac{y^3}{\sqrt{z^2+3}}+\dfrac{z^3}{\sqrt{x^2+3}}\ge\dfrac{1}{2}\)
Tìm Min : |x - 1| + |y - 2| + |z - 3| biết |x| + |y| + |z| = 2020
Cho x, y, z >0 thoả mãn \(x^2+y^2+z^2=1\) . Cmr: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)