Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)
CHO x,y,z >0 ,xyz=\(\frac{1}{2}\)
CMR:\(\frac{yz}{x^2\left(y+z\right)}\)+\(\frac{zx}{y^2\left(z+x\right)}\)+\(\frac{xy}{z^2\left(x+y\right)}\) ≥ xy+yz+zx
cho x,y,z,t thỏa mãn xyzt=1. Cmr:
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+xt\right)}+\frac{1}{z^3\left(xt+yt+yz\right)}+\frac{1}{t^3\left(xy+yz+xz\right)}\ge\frac{3}{4}\)
Chứng minh BĐT \(\sqrt[3]{\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)}\le\dfrac{\left(x+y+z\right)^2}{3}+1\)
với x,y,z>0 và \(Min\left\{xy,yz,zx\right\}\ge1\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho x;y;z;t thỏa mãn: \(xyzt=1\) Chứng minh rằng: \(\dfrac{1}{x^2\left(yz+zt+ty\right)}+\dfrac{1}{y^2\left(xz+zt+tx\right)}+\dfrac{1}{z^2\left(xy+xt+tz\right)}+\dfrac{1}{t^2\left(xy+yz+xz\right)}\ge\dfrac{4}{3}\)
1.Cho tam giác ABC. Chứng minh:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
2. Cho x, y, z > 0 và xyz = 1. Tìm giá trị nhỏ nhất :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Mọi người ơi giúp mình với
Câu 1: Cho x, y, z > 0 và \(5\left(x^2+y^2+z^2\right)=6\left(xy+yz+xz\right)\)Tìm giá trị nhỏ nhất của
\(P=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Câu 2: Cho a, b, c >0 và \(\left\{{}\begin{matrix}ab+bc+ca>0\\a\ge c\end{matrix}\right.\)Tìm giá trị nhỏ nhất của
\(p=\frac{\left(a+b\right)}{\left(b+c\right)}+\frac{\left(b+c\right)}{\left(c+a\right)}+\frac{\left(c+a\right)^2}{a\left(b+c\right)+c\left(b+a\right)}\)