phương trình mcosx+1=0 có nghiệm khi m thỏa mãn điều kiện nào
Với giá trị nào của tham số m hệ phương trình có nghiệm thỏa mãn điều kiện x > 0, y < 0?
Chú ý rằng m 2 + m + 1 > 0 ; - m 2 - 9 < 0 , ∀m nên nếu x > 0, y < 0 thì phương trình thứ nhất có vế trái dương, vế phải âm. Do đó không có giá trị nào của m làm cho hệ đã cho có nghiệm thỏa mãn điều kiện x > 0, y < 0.
Cho phương trình: x2 - 2(m - 1)x + m2 - 3m = 0 (1) với m là tham số.
a) Giải phương trình (1) khi m = 0.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn điều kiện: |x1| - 4 ≥ - |x2|
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
cho phương trình x^2-(2m+1)x+m-1=0.Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện 3x1-4x2=12
Cho phương trình x2 – 2x + m – 3 = 0 (1) (m là tham số). Tìm giá trị m biết phương trình (1) có hai nghiệm phân biệt thỏa mãn điều kiện:
Lời giải:
Để pt có 2 nghiệm phân biệt thì $\Delta'=1-(m-3)>0$
$\Leftrightarrow 4-m>0\Leftrightarrow m< 4$
Áp dụng định lý Viet:
$x_1+x_2=2$
$x_1x_2=m-3$
Khi đó:
$x_1^2-(x_1+x_2)x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-x_2^2=-12$
$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow 2(x_1-x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$
Kết hợp với $x_1+x_2=2$ thì $x_1=-2; x_2=4$
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
Cho phương trình $x^{2}-2 x+m-3=0$ ($m$ là tham số)
a) Giải phương trình khi $m=-5$.
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$ thỏa mãn điều kiện $x_{1}=3 x_{2}$.
Bài làm :
a) Thay m=-5 vào PT ; ta được :
\(x^2-2x-8=0\)
\(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)
=> PT có 2 nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{1+\sqrt{9}}{1}=4\\x_2=\frac{1-\sqrt{9}}{1}=-2\end{cases}}\)
b) Đk để PT có 2 nghiệm phân biệt :
\(\Delta'>0\Leftrightarrow\left(-1\right)^2-1.\left(m-3\right)=1-m+3=4-m>0\)
\(\Rightarrow m< 4\)
Khi đó ; theo hệ thức Vi-ét ; ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(1\right)\\x_1x_2=m-3\end{cases}}\)
Mà :
\(x_1=3x_2\Rightarrow x_1-3x_2=0\left(2\right)\)
Từ (1) và (2) ; ta có HPT :
\(\hept{\begin{cases}x_1+x_2=2\\x_1-3x_2=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1=\frac{3}{2}\\x_2=\frac{1}{2}\end{cases}}\)
\(\Rightarrow x_1x_2=\frac{3}{4}\Rightarrow m=\frac{3}{4}+3=\frac{15}{4}\left(TMĐK\right)\)
Vậy m=15/4 thì ...
a,x\(^2\)-2x+m-3=0 (*)
thay m=-5 vào pt (*) ta đk:
x\(^2\)-2x+(-5)-3=0⇔x\(^2\)-2x-8=0
Δ=(-2)\(^2\)-4.1.(-8)=36>0
⇒pt có hai nghiệm pb
\(x_1=\dfrac{2+\sqrt{36}}{2}=4\) , \(x_2=\dfrac{2-\sqrt{36}}{2}=-2\)
vậy pt đã cho có tập nghiệm S=\(\left\{4;-2\right\}\)
b,\(x^2-2x+m-3=0\) (*)
Δ=(-2)\(^2\)-4.1.(m-3)=4-4m+12=16-4m
⇒pt luôn có hai nghiệm pb⇔Δ>0⇔16-4m>0⇔16>4m⇔m<4
với m<4 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)
theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=m-3\end{matrix}\right.\) (1) ,(2)
\(x_1,x_2\) TM \(x_1=3x_2\) (3)
từ (1) và (3) ta đk:
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2+x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1}{2}\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1}{2}\\x_1=\dfrac{3}{2}\end{matrix}\right.\)
thay \(x_1=\dfrac{3}{2},x_2=\dfrac{1}{2}\) vào (2) ta đk:
\(\dfrac{3}{2}.\dfrac{1}{2}=m-3\Leftrightarrow3=4m-12\Leftrightarrow4m=15\Leftrightarrow m=\dfrac{15}{4}\) (TM)
vậy m=\(\dfrac{15}{4}\) thì pt (*) có hai nghiệm pb \(x_1,x_2\) TMĐK \(x_1=3x_2\)
Cho,phương,trình:x^2-4x+m-1=0
Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn điều kiện x1^2+x2^2=30
Áp dụng hệ thức vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x^2_2=30\)
\(\left(x_1+x_2\right)^2-2x_1.x_2=30\)
\(4^2-2\left(m-1\right)=30\)
\(2m-2=-14\)
\(m=-6\)
Để phương trình đã cho có hai nghiệm \(x_1,x_2\) thì
\(\Delta'>0\Leftrightarrow2^2-\left(m-1\right)=5-m>0\Leftrightarrow m< 5\)
Khi \(m< 5\) phương trình đã cho có hai nghiệm \(x_1,x_2\).
Theo định lí Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(m-1\right)=18-2m=30\)
\(\Leftrightarrow m=-6\) (thỏa mãn)
Cho phương trình: x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (m là tham số).
a) Giải phương trình với m= 0.
b) Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 thỏa mãn điều kiện:
1 x 1 + 1 x 2 = 4 .
a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)
Với m = 0, phương trình (1) trở thành:
x 2 − 2 x − 1 = 0 Δ ' = 2 ; x 1 , 2 = 1 ± 2
Vậy với m = 2 thì nghiệm của phương trình (1) là x 1 , 2 = 1 ± 2
b) Δ ' = m + 2
Phương trình (1) có hai nghiệm phân biệt ⇔ m > − 2
Áp dụng hệ thức Vi-ét, ta có: x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1
Do đó:
1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2
Kết hợp với điều kiện ⇒ m ∈ 1 ; − 3 2 là các giá trị cần tìm.
Cho phương trình: x2 - (2m +3 )x + 4m +2 = 0 (1) với m là tham số
a) Tìm m để phương trình (1) có 1 nghiệm bằng x = 2018 - \(\sqrt{2019}\)
b) Tìm m để phương trình (1) có 2 nghiệm thỏa mãn điều kiện:2x1 - 5x2 = 6
b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)
\(=4m^2+12m+9-16m-8\)
\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Theo đề, ta có:
\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=4m+2\)
\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)
\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)
\(\Leftrightarrow40m^2-112m-98=0\)
\(\Leftrightarrow40m^2-140m+28m-98=0\)
=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)
=>(2m-7)(20m+14)=0
=>m=7/2 hoặc m=-7/10
Cho phương trình a x 2 + b x + c = 0 thỏa mãn a ≠ 0 và 2 a + 6 b + 19 c = 0 , với điều kiện đó phương trình có nghiệm x 0 . Hỏi khẳng định nào sau đây đúng ?
A. x 0 ∈ 1 ; 2 .
B. x 0 ∈ − 1 3 ; − 1 2 .
C. x 0 ∈ 0 ; 1 3 .
D. x 0 ∈ 0 ; 1 3 .
Đáp án C
Đặt f ( x ) = a x 2 + b x + c là là hàm số đa thức nên liên tục trên .
Ta có: f ( 0 ) = c và
f 1 3 = a 9 + b 3 + c = a + 3 b + 9 c 9 = 2 a + 6 b + 18 c 18 = ( 2 a + 6 b + 19 c ) − c 18 = − c 18
⇒ f ( 0 ) . f 1 3 < 0
KL: Phương trình a x 2 + b x + c = 0 có ít nhất một nghiệm thuộc khoảng 0 ; 1 3