Cho 4ABC nhọn có AB = AC. Kẻ BD ? AC tại D, kẻ CE ? AB tại E. Gọi I là giao điểm của BD và CE. Chứng minh rằng:
a) 4ABD = 4ACE
b) EI = DI
c) AI ? BC
( số 4 là kí hiệu tam giác, dấu hỏi chấm là kí hiệu vuông góc)
bạn nào giúp mình với
cho tam giác nhọn ABC có AB=AC .Kẻ BD⊥AC tại D, kẻ CE ⊥AB tại E.Gọi I là giao điểm của BD và CE.Chứng minh rằng:
a,▲ABD=▲ACE
b,EI=DI
c,AI⊥BC
cho tam giác nhọn ABC có AB=AC . Kẻ BD ⊥ với AC tại D , kẻ CE⊥AB tại E . Gọi I là giao điểm của BD và CE.
a) CM △ ABD =△ACE
b) CM EI=DI
c) CM AI⊥BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: ΔABD=ΔACE
=>AD=AE
Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
=>EI=DI
c: ΔABD=ΔACE
=>BD=CE
BI+DI=BD
CI+EI=CE
mà EI=DI và BD=CE
nên BI=CI
IB=IC
AB=AC
Do đó: AI là đường trung trực của BC
=>AI\(\perp\)BC
cho tam giác abc có ab=ac. kẻ bd vuông góc với ac tại d kẻ ce vuông góc ab tại e. Gọi I là giao điểm của BD và CE. CA chứng minh rằng:
a) tam giác ABD= tam giác ACE
b) EI=DI
AI vuông góc với BC
Bài 1. Cho ABC cân tại A. Kẻ BD AC, CE AB (D AC; E AB). Gọi I là giao điểm BD và CE. Chứng minh rằng:
a) BE = CD
b) AI là phân giác BAC
c) Vẽ AK BC tại K. Chứng minh rằng AK, BD, CE cùng đi qua một điểm.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
Suy ra: BE=CD
b: Ta có: ΔEBC=ΔDCB
nên \(\widehat{ECB}=\widehat{DBC}\)
hay ΔIBC cân tại I
Ta có: AE+EB=AB
AD+DC=AC
mà AB=AC
và EB=DC
nên AE=AD
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
mà AK\(\perp\)BC
nên A,I,K thẳng hàng
=>AK,BD,CE đồng quy
Cho tam giác nhọn ABC , kẻ BD vuông góc với AC tại D , CE vuông góc với AB tại E . Gọi I là giao điểm của BD và CE . Chứng minh rằng:
a; tam giác ABD = tam giác ACE
b ;EI=DI
c; AI vuông góc với BC
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC) và
CE vuông góc với AB (E thuộc AB).
a) Chứng minh: BD = CE.
b) Chứng minh: Tam giác AED cân.
c) Gọi I là giao điểm của BD và CE. Chứng minh: AI là phân giác của góc A và
AI vuông góc BC
Các bạn giúp mình với
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
cho tam giác abc cân tại a có góc a<90 độ. kẻ bd_|_ac( d thuộc ac ), kẻ ce_|_ab( e thuộc ab). gọi i là giao điểm của bd và ce. chứng minh rằng:
a) ad=ae
b) ai là phân giác của góc BAC
a) Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\) (gt)
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD=\widehat{ACE}\) (cạnh huyền - góc nhọn)
\(\Rightarrow AD=AE\) (hai cạnh tương ứng)
b) Xét \(\Delta AEI\) và \(\Delta ADI\) có:
\(AI\) là cạnh chung
AE = AD (cmt)
\(\widehat{AEI}=\widehat{ADI}=90^0\)
\(\Rightarrow\Delta AEI=\Delta ADI\) (cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{EAI}=\widehat{DAI}\) (hai góc tương ứng)
\(\Rightarrow\) \(AI\) là tia phân giác của \(\widehat{DAE}\)
Hay \(AI\) là tia phân giác của \(\widehat{BAC}\)
Cho tam giác ABC cân tại A ( < 90 ° ). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc vói AB tại E. a) Chứng minh tam giác ADE cân. b) Chứng minh DE / / BC c) Gọi I là giao điểm của BD và CE. Chứng minh IB = IC d) Chứng minh. AI BC
Cho tam giác ABC cân tại A A ^ < 90 ° . Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E.
a) Chứng minh tam giác ADE cân.
b) Chứng minh DE// BC.
c) Gọi I là giao điểm của BD và CE. Chứng minh IB = IC
d) Chứng minh. A I ⊥ B C .