Tìm x biết: a, 5x(x-3)-x²+9=0 b, 2x²+5x=0
Tìm x biết:
a. 5x² - 25x
b. (X+3)² - 5x - 15 =0
c. 2x⁵ -4x³+2x =0
Giúp mik với
b) \(\left(x+3\right)^2-5x-15=0\\ \Leftrightarrow\left(x+3\right)^2-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+3-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)
c) \(2x^5-4x^3+2x=0\\ \Leftrightarrow2x\left(x^4-2x^2+1\right)=0\\ \Leftrightarrow2x\left(x^2-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\\left(x^2-1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của pt là : \(S=\left\{0;1;-1\right\}\)
tìm x biết
a/ x^3-x^2-x+1=0
b/(2x^3-3)^2-(4x^2-9)=0
c/x^4+2x^3-6x-9=0
d/2(x+5)-x^2-5x=0
\(a)\)\(x^3-x^2-x+1=0\)
\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=-1\)
Chúc bạn học tốt ~
a) x3-x2-x+1 = 0 \(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)\(\Leftrightarrow x^2-1=0\)hoặc x-1=0
\(\Leftrightarrow x=1\)
\(c)\)\(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\)\(\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+3+2x\right)=0\)
\(\Leftrightarrow\)\(x^2-3=0\)
Hoặc \(x^2+3+2x=0\)
\(\Leftrightarrow\)\(x^2=3\)
Hoặc \(x\left(x+2\right)=-3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Hoặc \(x;\left(x-2\right)\inƯ\left(-3\right)\)
Ta có bảng :
\(x\) | \(1\) | \(-3\) | \(-1\) | \(3\) |
\(x-2\) | \(-3\) | \(1\) | \(3\) | \(-1\) |
\(x\) | \(1\) | \(-3\) | \(-1\) | \(3\) |
\(x\) | \(-1\) | \(3\) | \(5\) | \(1\) |
Vậy \(x\in\left\{1;-1;3;-3;5\right\}\)
Chúc bạn học tốt ~
tìm x biết:
a)x2 + 3x = 0 b) x3 – 4x = 0
c) 5x(x-1) = x-1 d) 2(x+5) - x2-5x = 0
e) 2x(x-5)-x(3+2x)=26 f) 5x.(x – 2012) – x + 2012 = 0
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
tìm x biết
a/ x^3-x^2-x+1=0
b/(2x^3-3)^2-(4x^2-9)=0
c/x^4+2x^3-6x-9=0
d/2(x+5)-x^2-5x=0
tìm x,biết:
a 2x(x-7)+5x-35
b x^3-2x^2+x-3=0
c 4x^2+12x+9=0
d x(x-3)-7x+21=0
\(d,x\left(x-3\right)-7x+21=0\)
\(\Leftrightarrow x\left(x-3\right)-7\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=7\end{cases}}}\)
\(a,2x\left(x-7\right)+5x-35=0\)
\(\Leftrightarrow2x\left(x-7\right)+5\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-\frac{5}{2}\end{cases}}}\)
\(c,4x^2+12x+9=0\)
\(\Leftrightarrow4x^2+6x+6x+9=0\)
\(\Leftrightarrow2x\left(2x+3\right)+3\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow x=-\frac{3}{2}\)
a) 2x(x-7)+5x-35=0
<=> 2x(x-7)+5(x-7)=0
<=>(2x+5)(x-7)=0
<=> (2x+5)=0 <=> x=-5/2
hoặc <=> x-7=0 <=> x=7
Bài 2 : Tìm x , biết
a) ( 3x -1 ) (2x+7) - ( x +1) (6x-5 ) = 16
b) ( 10x +9 )x - ( 5x -1 ) (2x+3 )= 8
c) ( 3x - 5 ) ( 7- 5x ) + ( 5x +2 )( 3x-2 ) -2 = 0
d) x(x + 1) ( x+6 ) - x3 = 5x
Tìm x biết
a) 25x^2 -1-(5x-1)(x+2) = 0
b) (2x-3)-(3-2x)(x-1) = 0
c) 9 -4x^2-(6+4x)(x-5) = 0
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
a) 25x2 - 1 - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 ) - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 - x - 2) = 0
<=> ( 5x - 1 )( 4x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{4}\end{cases}}}\)
Vậy .......
Tìm x biết:
a) (2x - 3).(x + 5) = 0
b) 3x.(x - 2) - 7.(x - 2) = 0
c) 5x.(2x - 3) - 6x + 9 = 0
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
a: Ta có: \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
b: Ta có: \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{3}\end{matrix}\right.\)
c: Ta có: \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
a)
(2x-1)2-(5x-5)2=0
<=>(2x-1-5x+5)(2x-1+5x-5)=0
<=>(-3x+4)(7x-6)=0
<=>\(\orbr{\begin{cases}-3x+4=0\\7x-6=0\end{cases}}\)
<=>\(\orbr{\begin{cases}-3x=-4\\7x=6\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{-4}{-3}=\frac{4}{3}\\x=\frac{6}{7}\end{cases}}\)
b)
(2x+1)2-4(x+3)2=0
<=>(2x+1)2-[2(x+3)]2=0
<=>(2x+1)2-(2x+6)2=0
<=>(2x+1-2x-6)(2x+1+2x+6)=0
<=>-5(4x+7)=0
<=>4x+7=0
<=>4x=-7
<=>\(x=-\frac{7}{4}\)