Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nghĩa Bùi
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn Huy Tú
17 tháng 2 2017 lúc 18:23

Ta có: \(A=\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}.\frac{1}{120}+\frac{2}{2003}\)

\(\Rightarrow A=\frac{1}{180}+\frac{2}{2003}\)

\(B=\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}.\frac{1}{80}+\frac{5}{2003}\)

\(\Rightarrow B=\frac{1}{64}+\frac{5}{2003}\)

\(\left\{\begin{matrix}\frac{1}{64}>\frac{1}{180}\\\frac{5}{2003}>\frac{2}{2003}\end{matrix}\right.\Rightarrow\frac{1}{64}+\frac{5}{2003}>\frac{1}{180}+\frac{2}{2003}\Rightarrow B>A\)

Vậy A < B

nguyen thi nam
Xem chi tiết
Han Sara
12 tháng 10 2019 lúc 12:26

\(1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-.......-\frac{2}{61.63}-\frac{2}{63.65}\)

=\(-1.\left(\frac{2}{3.5}+\frac{2}{5.7}+......\frac{2}{63.65}\right)+1\)

=\(-1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{63}-\frac{1}{65}\right)+1\)

=\(-1.\left(\frac{1}{3}-\frac{1}{65}\right)+1\)

=\(-1.\frac{62}{195}+1\)

=\(\frac{-62}{195}+\frac{195}{195}\)

=\(\frac{133}{195}\)

Hok tốt nhé bn

Đỗ thị như quỳnh
Xem chi tiết
Nguyễn Huy Tú
23 tháng 12 2016 lúc 18:04

Bài 1:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)

\(\Rightarrow P=\frac{-7}{15}\)

Vậy \(P=\frac{-7}{15}\)

Bài 2:
Ta có: \(S=23+43+63+...+203\)

\(\Rightarrow S=13+10+20+23+...+103+100\)

\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)

\(\Rightarrow S=3025+450\)

\(\Rightarrow S=3475\)

Vậy S = 3475

Trang
23 tháng 12 2016 lúc 19:01

1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

=> P = \(\frac{1}{5}-\frac{2}{3}\)

P = \(\frac{3}{15}-\frac{10}{15}\)

=> P =\(\frac{-7}{15}\)

2. ta có:

S = 23 + 43 + 63 +...+ 203

=> S = 13 + 10 + 23 + 20 +...+ 103 + 100

=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )

=> S = 3025 + 550

=> S = 3575

Vậy S = 3575

Mộc Miên
10 tháng 7 2018 lúc 22:18

1. \(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2003}+\dfrac{2}{2004}-\dfrac{2}{2005}}{\dfrac{3}{2003}+\dfrac{3}{2004}-\dfrac{3}{2005}}\)

=\(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{5\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}-\)\(\dfrac{2\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}{3\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}\)

=\(\dfrac{1}{5}-\dfrac{2}{3}\)

=\(-\dfrac{7}{15}\)

Dương Trung Nghĩa
Xem chi tiết
Nguyễn Tiến Đạt
10 tháng 8 2015 lúc 16:20

@@                                         

👁💧👄💧👁
Xem chi tiết
Phùng Tuệ Minh
13 tháng 4 2019 lúc 22:11

Bài 2:

Ta có: A=\(2\left(\frac{1}{60.63}+\frac{1}{63.66}+\frac{1}{66.69}+...+\frac{1}{117.120}+\frac{1}{2011}\right)\)

\(=2\left(\frac{3}{60.63}+\frac{3}{63.66}+....+\frac{3}{117.120}+\frac{3}{2011}\right).\frac{1}{3}\)

\(=2\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}+\frac{3}{2011}\right).\frac{1}{3}\)

\(=2\left(\frac{1}{60}-\frac{1}{120}+\frac{3}{2011}\right).\frac{1}{3}\)\(=\frac{2}{3}.\left(\frac{1}{120}+\frac{3}{2011}\right)=\frac{2}{3}.\frac{1}{120}+\frac{3}{2011}.\frac{2}{3}\)

\(=\frac{1}{180}+\frac{2}{2011}\)

B=\(5\left(\frac{1}{40.44}+\frac{1}{44.48}+...+\frac{1}{76.80}\right)+\frac{5}{2011}\)

\(=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2011}\)

\(=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2011}=\frac{5}{4}.\frac{1}{80}+\frac{5}{2011}\)\(=\frac{1}{64}+\frac{5}{2011}\)

Xét: \(\frac{1}{180}< \frac{1}{64};\frac{2}{2011}< \frac{5}{2011}\)

\(\Rightarrow\frac{1}{180}+\frac{2}{2011}< \frac{1}{64}+\frac{5}{2011}\)

\(\Leftrightarrow A< B\)

Vậy: A<B

Phùng Tuệ Minh
9 tháng 5 2019 lúc 13:09

Bài 3: Ta có:

C=222...22000...00777....7

( có 2011 c/s 2; 2011 c/s 0; 2011 c/s 7)

\(\Rightarrow\) Tổng các c/s của C là:

2011.2+2011.0+2011.7=18099=9.2011 \(⋮9\)

\(\Rightarrow C⋮9\)

Vậy C có ít nhất 3 ước: 1;C và C.

Từ đó suy ra C là hợp số.

Vậy C là hợp số.

Nguyen
9 tháng 5 2019 lúc 13:58

Bài 4: Gọi x là số HS. ĐK:\(x\in N,0< x< 400\)

Có:\(x-3⋮10;12;15\)\(\Rightarrow x-3⋮60\Rightarrow x-3\in\left\{60;120;180;240;300;360;...\right\}\)

\(\Rightarrow x\in\left\{63;123;183;243;303;363;...\right\}\)

mà \(x⋮11\Rightarrow x=363\left(TM\right)\)

Thiên Hoàng
Xem chi tiết
Cô Bé Song Ngư
Xem chi tiết
‍
Xem chi tiết
Xyz OLM
11 tháng 10 2020 lúc 17:37

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
11 tháng 10 2020 lúc 17:42

Ta có:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)

\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

Khách vãng lai đã xóa