tính : \(A=\frac{2}{60\cdot63}+\frac{2}{63\cdot66}+...+\frac{2}{117\cdot120}+\frac{2}{2003}\)
Cho
\(A=\frac{2}{60\cdot63}+\frac{2}{61\cdot64}+...+\frac{2}{117\cdot120}+2011\)
\(B=\frac{5}{40\cdot44}+\frac{5}{44\cdot48}+...+\frac{5}{76\cdot80}+\frac{2}{2011}\)
Hãy so sánh A và B
So sánh A=\(\frac{2}{60\times63}+\frac{2}{63\times66}+...+\frac{2}{117\times120}+\frac{2}{2003}\)
B=\(\frac{5}{40\times44}+\frac{5}{44\times48}+...+\frac{5}{76\times80}+\frac{5}{2003}\)
Ta có: \(A=\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2003}\)
\(\Rightarrow A=\frac{2}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2003}\)
\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2003}\)
\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2003}\)
\(\Rightarrow A=\frac{2}{3}.\frac{1}{120}+\frac{2}{2003}\)
\(\Rightarrow A=\frac{1}{180}+\frac{2}{2003}\)
\(B=\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2003}\)
\(\Rightarrow B=\frac{5}{4}\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2003}\)
\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2003}\)
\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2003}\)
\(\Rightarrow B=\frac{5}{4}.\frac{1}{80}+\frac{5}{2003}\)
\(\Rightarrow B=\frac{1}{64}+\frac{5}{2003}\)
Vì \(\left\{\begin{matrix}\frac{1}{64}>\frac{1}{180}\\\frac{5}{2003}>\frac{2}{2003}\end{matrix}\right.\Rightarrow\frac{1}{64}+\frac{5}{2003}>\frac{1}{180}+\frac{2}{2003}\Rightarrow B>A\)
Vậy A < B
\(1-\frac{2}{3\cdot5}-\frac{2}{5\cdot7}-\frac{2}{7\cdot9}-...-\frac{2}{61\cdot63}-\frac{2}{63\cdot65}\)
\(1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-.......-\frac{2}{61.63}-\frac{2}{63.65}\)
=\(-1.\left(\frac{2}{3.5}+\frac{2}{5.7}+......\frac{2}{63.65}\right)+1\)
=\(-1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{63}-\frac{1}{65}\right)+1\)
=\(-1.\left(\frac{1}{3}-\frac{1}{65}\right)+1\)
=\(-1.\frac{62}{195}+1\)
=\(\frac{-62}{195}+\frac{195}{195}\)
=\(\frac{133}{195}\)
Hok tốt nhé bn
1, Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
2,Biết : 13 + 23 + .......+103 = 3025
Tính S = 23 + 43 + 63 + ....+ 203
Bài 1:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
Bài 2:
Ta có: \(S=23+43+63+...+203\)
\(\Rightarrow S=13+10+20+23+...+103+100\)
\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)
\(\Rightarrow S=3025+450\)
\(\Rightarrow S=3475\)
Vậy S = 3475
1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
=> P = \(\frac{1}{5}-\frac{2}{3}\)
P = \(\frac{3}{15}-\frac{10}{15}\)
=> P =\(\frac{-7}{15}\)
2. ta có:
S = 23 + 43 + 63 +...+ 203
=> S = 13 + 10 + 23 + 20 +...+ 103 + 100
=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )
=> S = 3025 + 550
=> S = 3575
Vậy S = 3575
1. \(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2003}+\dfrac{2}{2004}-\dfrac{2}{2005}}{\dfrac{3}{2003}+\dfrac{3}{2004}-\dfrac{3}{2005}}\)
=\(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{5\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}-\)\(\dfrac{2\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}{3\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}\)
=\(\dfrac{1}{5}-\dfrac{2}{3}\)
=\(-\dfrac{7}{15}\)
\(63\frac{59}{1058}\cdot63\frac{108}{2200}\cdot63\frac{103}{2015}+123=?\)
Bài 1:
a) Tính: \(\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
b) Tìm x, biết: \(1\frac{1}{30}:\left(24\frac{1}{6}-24\frac{1}{5}\right)-\frac{1\frac{1}{2}-\frac{3}{4}}{4x-\frac{1}{2}}=-1\frac{1}{19}:\left(8\frac{1}{5}-8\frac{1}{3}\right)\)
Bài 2: So sánh:
\(A=\frac{2}{60\cdot63}+\frac{2}{63\cdot66}+\frac{2}{66\cdot69}+...+\frac{2}{117\cdot120}+\frac{2}{2011}\)và \(B=\frac{5}{40\cdot44}+\frac{5}{44\cdot48}+\frac{5}{48\cdot52}+..+\frac{5}{76\cdot80}+\frac{5}{2011}\)
Bài 3:Cho \(C=222...22000...00777...77\)(có 2011 số 2; 2011 số 0; 2011 số 7). Hỏi C là số nguyên tố hay hợp số?
Bài 4: Số học sinh khối 6 xếp hàng, nếu xếp hàng 10, hàng 12, hàng 15 đều dư 3 học sinh. Nhưng khi xếp hàng 11 thì vừa đủ. Tính số học sinh khối 6, biết số học sinh khối 6 chưa đến 400 học sinh?
Bài 5: Trên đường thẳng xx' lấy điểm O bất kì, vẽ 2 tia Oz và Oy nằm trên cùng 1 nửa mặt phẳng có bờ là xx' sao cho \(\widehat{xOz}=40^o;\widehat{xOy}=3\widehat{xOz}\)
a) Trong 3 tia Ox, Oy, Oz tia nào nằm giữa 2 tia còn lại?
b) Gọi Oz' là tia phân giác của \(\widehat{x'Oy}\). Tính \(\widehat{zOz'}\)
Bài 6: Một số chia cho 7 thì dư 3, chia cho 17 thì dư 12, chia cho 23 thì dư 7. Hỏi số đó chia cho 2737 thì dư bao nhiêu?
Bài 2:
Ta có: A=\(2\left(\frac{1}{60.63}+\frac{1}{63.66}+\frac{1}{66.69}+...+\frac{1}{117.120}+\frac{1}{2011}\right)\)
\(=2\left(\frac{3}{60.63}+\frac{3}{63.66}+....+\frac{3}{117.120}+\frac{3}{2011}\right).\frac{1}{3}\)
\(=2\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}+\frac{3}{2011}\right).\frac{1}{3}\)
\(=2\left(\frac{1}{60}-\frac{1}{120}+\frac{3}{2011}\right).\frac{1}{3}\)\(=\frac{2}{3}.\left(\frac{1}{120}+\frac{3}{2011}\right)=\frac{2}{3}.\frac{1}{120}+\frac{3}{2011}.\frac{2}{3}\)
\(=\frac{1}{180}+\frac{2}{2011}\)
B=\(5\left(\frac{1}{40.44}+\frac{1}{44.48}+...+\frac{1}{76.80}\right)+\frac{5}{2011}\)
\(=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2011}\)
\(=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2011}=\frac{5}{4}.\frac{1}{80}+\frac{5}{2011}\)\(=\frac{1}{64}+\frac{5}{2011}\)
Xét: \(\frac{1}{180}< \frac{1}{64};\frac{2}{2011}< \frac{5}{2011}\)
\(\Rightarrow\frac{1}{180}+\frac{2}{2011}< \frac{1}{64}+\frac{5}{2011}\)
\(\Leftrightarrow A< B\)
Vậy: A<B
Bài 3: Ta có:
C=222...22000...00777....7
( có 2011 c/s 2; 2011 c/s 0; 2011 c/s 7)
\(\Rightarrow\) Tổng các c/s của C là:
2011.2+2011.0+2011.7=18099=9.2011 \(⋮9\)
\(\Rightarrow C⋮9\)
Vậy C có ít nhất 3 ước: 1;C và C.
Từ đó suy ra C là hợp số.
Vậy C là hợp số.
Bài 4: Gọi x là số HS. ĐK:\(x\in N,0< x< 400\)
Có:\(x-3⋮10;12;15\)\(\Rightarrow x-3⋮60\Rightarrow x-3\in\left\{60;120;180;240;300;360;...\right\}\)
\(\Rightarrow x\in\left\{63;123;183;243;303;363;...\right\}\)
mà \(x⋮11\Rightarrow x=363\left(TM\right)\)
1.
a.Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
b.Biết : 13 + 23 + ... + 103 = 3025. Tính S = 23 + 43 + 63 + ... + 203
c.Cho A=\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)Tính giá trị của A biết x=\(\frac{1}{2}\), y là số nguyên âm lớn nhất
2.Một con thỏ chạy trên một con đường mà hai phần ba con đường băng qua đồng cỏ và đoạn đường còn lại đi qua đầm lầy. Thời gian con thỏ chạy trên đồng cỏ bằng nửa thời gian chạy qua đầm lầy. Hỏi vận tốc của con thỏ trên đoạn đường nào lớn hơn ? Tính tỉ số vận tốc của con thỏ trên hai đoạn đường ?
Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
Tính :
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
Ta có:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)
\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)