Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Thanh Thanh
Xem chi tiết
soyeon_Tiểubàng giải
10 tháng 10 2016 lúc 11:49

Ta có:

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)

soyeon_Tiểubàng giải
10 tháng 10 2016 lúc 13:01

A = 51n + 47102

A = (...1) + 47100.472

A = (...1) + (474)25.(...9)

A = (...1) + (...1)25.9

A = (...1) + (...1).9

A = (...1) + (...9)

\(A=\left(...0\right)⋮10\left(đpcm\right)\)

Đức Phạm Anh
Xem chi tiết
Như Thanh
Xem chi tiết
Nguyễn Tú Akp05
Xem chi tiết
Nguyễn Tú Akp
Xem chi tiết
huy naruto
21 tháng 10 2016 lúc 21:24

ta có 47102 thì ta so sánh chữ số cuối thì  thành 72 thì sẽ có tận cùng là 9 (72 =49)

mà 51n bao giờ cũng có tận cùng là 1

=>......1+........9= ......10 chia hết cho 10

minhduc
24 tháng 10 2017 lúc 19:38

Ta có :

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)

Phạm Bảo Chi
13 tháng 9 2018 lúc 12:52

bài này...ko bít làm

NGUYỄN THỊ BÌNH
Xem chi tiết
Fatasio
Xem chi tiết
Ngân Đặng Bảo
11 tháng 7 2018 lúc 9:38

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

Thuy Trang 5a
Xem chi tiết
ST
11 tháng 7 2018 lúc 17:28

a, \(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

Vậy ...

b, \(a^2b+b^2a=ab\left(a+b\right)\)

Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)

Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)

Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)

Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)

c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)

Monkey D Luffy
Xem chi tiết
Nguyễn Quốc Việt
17 tháng 12 2016 lúc 21:48

Ta có:

\(A=51^n+47^{102}\)

\(\Rightarrow A=\overline{...1}+47^{100}.47^2\)

\(\Rightarrow A=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right).\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\overline{...9}\)

\(\Rightarrow A=\overline{...0}\)

\(\overline{....0}\text{⋮}10\) nên \(A\text{⋮}10\)

Vậy \(A\text{⋮}10\left(đpcm\right)\)