Ta có:
\(51^n\equiv1\left(mod10\right)\)
\(47^2\equiv-1\left(mod10\right)\)
\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)
A = 51n + 47102
A = (...1) + 47100.472
A = (...1) + (474)25.(...9)
A = (...1) + (...1)25.9
A = (...1) + (...1).9
A = (...1) + (...9)
\(A=\left(...0\right)⋮10\left(đpcm\right)\)