Cho
a/b + c/d + e/f = 1
b/a +d/c +f/e = 1
chứng minh
A2/b2 + c2/d2 +e2/f2 = 1
Cho a, b, c, d, e, f là các số thực thỏa mãn
( d - 1 ) 2 + e - 2 2 + f - 3 2 = 1 a + 3 2 + b - 2 2 + c 2 = 9
Gọi giá trị lớn nhất, giá trị nhỏ nhất của biểu thức F = a - d 2 + b - e 2 + c - f 2 lần lượt là M, m
Khi đó, M - m bằng:
A. 10
B. 10
C. 8
D. 2 2
Chọn C
Gọi A (d; e; f) thì A thuộc mặt cầu (S1): (x - 1)2 + (y - 2)2 + (z- 3)2 = 1 có tâm I1 = (1; 2; 3), bán kính R1 = 1
B (a; b; c) thì B thuộc mặt cầu (S2): (x - 3)2 + (y - 2)2 + z2 = 9 có tâm I2 = (-3; 2; 0), bán kính R2 = 3
Ta có I1I2 = 5 > R1 + R2 => (S1) và (S2) không cắt nhau và ở ngoài nhau.
Dễ thấy F = AB, AB max khi A ≡ A1; B ≡ B1
=> Giá trị lớn nhất bằng I1I2 + R1 + R2 = 9.
AB min khi A ≡ A2; B ≡ B2
=> Giá trị nhỏ nhất bằng I1I2 - R1 - R2 = 1.
Vậy M - m =8
CMR a2+b2+c2+d2+e2≥a(b+c+d+e)
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh
a2+b2+c2+d2-2ab-2bc-2cd-2da≥- 1/4
Bên dưới có giải thích chi tiết rồi đó em:
Chứng minh rằng: a2+b2+c2+d2+e2≥a(b+c+d+e).
Refer:
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:. a²/4 + c² ≥ ac.
a²/4 + d² ≥ ad.
a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)
=> đpcm.
Dấu " = " xảy ra <=> a/2 = b = c = d = e.
16. Cho tam giác ABC , treeb tia đối của tia AB lấy điểm E , trên tia đối của tia AC lấy điểm D , các tia phân giác của các góc ACB^ và AED^ cát nhau ở F , BCM^ = C2 ; AEN^ = E1 ;NED^ = E^2 . Chứng minh rằng :
a, B^ + C^1 = F^ + E^1
b , D^ + E^2 = F^ + C^2
c , EFC^ = ABD^ + ADE^ : 2
Giả sử cần tính tổng giá trị trong các ô C2 và D4, sau đó nhân vs giá trị trong ô B2. Công thức nào sau đây là đúng?
(A) (D4+C2)* B2 (B) D4+C2*B2 (C) =(D4+c2)*b2
(D)=(B2*(D4+C2) (E) =(D4+C2)B2 (F) =(D4+C2)* B2
Giả sử cần tính tổng giá trị trong các ô C2 và D4, sau đó nhân vs giá trị trong ô B2. Công thức nào sau đây là đúng?
(A) (D4+C2)* B2 (B) D4+C2*B2 (C) =(D4+c2)*b2
(D)=(B2*(D4+C2) (E) =(D4+C2)B2 (F) =(D4+C2)* B2
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
Cho a,b,c,d >0, a+b+c+d=4.cmr: a/(1+b2)+b/(1+c2)+c/(1+d2)+d/(...
Ta có:
a/(1+b²) = a- ab²/(1+b²) ≥ a - ab/2 (do 1+b² ≥ 2b)
Tương tự ta có:
b/(1+c²) ≥ b- bc/2
c/(1+d²) ≥ c - cd/2
d/(1+a²) ≥ d - ad/2
Cộng vế với vế ta được:
VT = a/(1+b²) + b/(1+c²) + c/(1+d²) + d/(1+a²) ≥ (a+b+c+d) - (ab+bc+cd+da)/2
VT ≥ (a+b+c+d -ab+bc+cd+da)/2 + (a+b+c+d)/2
Ta có:
ab+bc+cd+da = (a+c)(b+d) ≤ [(a+b+c+d)/2]² = 4 = a+b+c+d
=> a+b+c+d ≥ ab+bc+cd+da
=> VT ≥ (a+b+c+d)/2 =2
Dấu = khi a=b=c=d=1
Tìm a,b,c,d thỏa mãn
a2+b2+c2+d2+1=a×(b+c+d+1)
\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)