Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm A( 2;1), B(4;0), C(2; 3).
a) Tìm tọa độ trọng tâm G của tam giác ABC và trung điểm I của cạnh AB.
b) Cho D (m ; 2). Tìm m để ba điểm A, B, D thẳng hàng.
c) Tính cos của góc B trong tam giác ABC.
trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD ( AB//CD) . biết tọa độ các điểm A(-8;2) B(-4;6)D(-6-8) xác định tọa độ đỉnh C
\(\overrightarrow{AB}=\left(-4;4\right)=-4\left(1;-1\right)\)
\(\Rightarrow\) Phương trình CD song song AB đi qua D có dạng:
\(1\left(x+6\right)+1\left(y+8\right)=0\Leftrightarrow x+y+14=0\)
Gọi M là trung điểm AB \(\Rightarrow M\left(-6;4\right)\)
Phương trình đường thẳng d qua M và vuông góc AB có dạng:
\(1\left(x+6\right)-1\left(y-4\right)=0\Leftrightarrow x-y+10=0\)
Gọi N là giao điểm CD và d \(\Rightarrow\) N là trung điểm CD do ABCD là hình thang cân
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x+y+14=0\\x-y+10=0\end{matrix}\right.\) \(\Rightarrow N\left(-12;-2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_D=...\\y_C=2y_N-y_D=...\end{matrix}\right.\)
Trong không gian với hệ tọa độ Oxy cho mặt phẳng α : 2 x - y - 3 z = 4 . Gọi A ,B ,C lần lượt là giao điểm của mặt phẳng α với các trục tọa độ Ox, Oy, Oz. Thể tích tứ diện OABC bằng:
A. 1.
B. 2.
C. 32 9
D. 16 9
Trong mặt phẳng tọa độ với hệ tọa độ Oxy, cho hai điểm A(-2,3), B(1,-6). Tọa độ vecto AB là?
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)
Trong mặt phẳng với hệ toạ độ Oxy cho véctơ v → (-1;2) điểm A(3;5). Tìm tọa độ của các điểm A' là ảnh của A qua phép tịnh tiến theo v → .
A. A'(2;7)
B. A'(-2;7)
C. A'(7;2)
D. A'(-2;-7)
Trong mặt phẳng với hệ tọa độ Oxy cho ba điểm A ( 1 ; 2) , B ( 3 ; 4 ) , C ( 6 ; -5 )
a)Tính toán các cạnh và số đo các góc của tam giác ABC
\(AB=\sqrt{\left(3-1\right)^2+\left(4-2\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(6-1\right)^2+\left(-5-2\right)^2}=\sqrt{74}\)
\(BC=\sqrt{\left(6-3\right)^2+\left(-5-4\right)^2}=3\sqrt{10}\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{-\sqrt{37}}{37}\)
=>góc A=99 độ
AB/sinC=AC/sinB=BC/sinA
=>\(\dfrac{3\sqrt{10}}{sin99}=\dfrac{2\sqrt{2}}{sinC}=\dfrac{\sqrt{74}}{sinB}\)
=>góc C=17 độ; góc B=64 độ
Trong mặt phẳng với hệ trục tọa độ Oxy, cho 2 điểm A91;2) và B(4;3). Tìm tọa độ điểm M trên trục hoành sao cho góc AMB bằng 45 độ.
Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)
Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)
\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))
\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)
\(\Leftrightarrow x=1;x=5\)
Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)
Trong không gian với hệ tọa độ Oxyz, cho các điểm A 1 ; 0 ; 0 , B 0 ; 2 ; 0 , C 0 ; 0 ; m . Để mặt phẳng A B C hợp với mặt phẳng O x y một góc 60 ° thì giá trị của m là
A. m = ± 12 5
B. m = ± 2 5
C. m = ± 12 5
D. m = ± 5 2
Suy ra mặt phẳng (ABC) có một VTPT là
Mặt phẳng (Oxy) có một VTPT là k → = 0 ; 0 ; 1
Gọi φ là góc giữa hai mặt phẳng (ABC) và (Oxy). Ta có
Chọn C.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3). Gọi A 1 A 2 A 3 lần lượt là hình chiếu vuông góc của A lên các mặt phẳng (Oyz), (Ozx), (Oxy). Phương trình của mặt phẳng ( A 1 A 2 A 3 ) là
A. x 1 + y 2 + z 3 = 0
B. x 3 + y 6 + z 9 = 1
C. x 1 + y 2 + z 3 = 1
D. x 2 + y 4 + z 6 = 1
Đáp án D
Tọa độ các điểm
x 2 + y 4 + z 6 = 1
Trong không gian với hệ tọa độ Oxy, viết phương trình mặt phẳng (P) chứa điểm M(1;3; –2), cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho O A 1 = O B 2 = O C 4
A. x + 2y + 4z + 1 = 0
B. 4x + 2y + z – 8 = 0
C. 2x – y – z – 1 = 0
D. 4x + 2y + z + 1 = 0
Đáp án B
Phương pháp :
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a;b;c>0) => OA = a; OB = b; OC = c
Viết phương trình mặt phẳng (P): x a + y b + z c = 1
Cách giải :
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a;b;c>0) => OA = a; OB = b; OC = c
O A 1 = O B 2 = O C 4 <=>
Khi đó phương trình mặt phẳng (P) là: x a + y 2 a + z 4 a = 1
Vậy phương trình mặt phẳng (P) là :
x 2 + y 4 + z 8 = 1 <=> 4x + 2y + z – 8 = 0