Suy ra mặt phẳng (ABC) có một VTPT là
Mặt phẳng (Oxy) có một VTPT là k → = 0 ; 0 ; 1
Gọi φ là góc giữa hai mặt phẳng (ABC) và (Oxy). Ta có
Chọn C.
Suy ra mặt phẳng (ABC) có một VTPT là
Mặt phẳng (Oxy) có một VTPT là k → = 0 ; 0 ; 1
Gọi φ là góc giữa hai mặt phẳng (ABC) và (Oxy). Ta có
Chọn C.
Trong không gian với hệ tọa độ Oxyz, biết M(a,b,c) (với a > 0) là điểm thuộc đường thẳng Δ : x 1 = y + 2 − 1 = z − 1 2 và cách mặt phẳng P : 2 x − y + 2 z − 5 = 0 một khoảng bằng 2. Tính giá trị của T=a+b+c
A. T = -1
B. T = -3
C. T = 3.
D. T = 1.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z - 1 = 0 và hai điểm A ( 1;-3;0 ), B ( 5;-1;-2 ). Điểm m ( a;b;c ) trên mặt phẳng (P) sao cho M A - M B đạt giá trị lớn nhất. Tính tổng a + b + c
A. 1
B. 11
C. 5
D. 6
Trong không gian với hệ tọa độ Oxyz, cho điểm M(a;b;c), (a > 0) thuộc đường thẳng d : x − 3 = y + 2 − 1 = z − 1 2 . Hình chiếu song song của điểm M trên mặt phẳng P : x + 5 y − 2 = 0 theo phương của đường thẳng Δ: x = 3 − t y = 1 + 2 t z = − 3 t là điểm M’ sao cho MM ' = 14 . Tính giá trị của biểu thức T = a + b + c là:
A. 0
B. 1
C. 2
D. 3
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P): x + (m+1)y – 2z + m = 0 và (Q): 2x – y +3 = 0 với m là tham số thực. Để mặt phẳng (P) và (Q) vuông góc thì giá trị của m bằng bao nhiêu?
A. m = -5
B. m = 1
C. m = 3
D. m = -1
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng P : x + 2 y - z + 3 = 0 và Q : x - 4 y + m - 1 z + 1 = 0 với m là tham số. Tìm tất cả các giá trị của tham số thực m để mặt phẳng (P) vuông góc với mặt phẳng (Q)
A. m = -6
B. m = -3
C. m = 1
D. m = 2
Trong không gian với hệ tọa độ Oxyz, cho ba vec tơ a → ( 1 ; m ; 2 ) ; b → m + 1 ; 2 ; 1 ; c → 0 ; m - 2 ; 2 . Giá trị của m để a → , b → , c → đồng phẳng là:
A. 2 5
B. - 2 5
C. 1 5
D. 1
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P) : x + ( m + 1)y - 2z + m = 0 và ( Q) : 2x - y + 3 = 0 với m là tham số thực. Để ( P ) và ( Q ) vuông góc thì giá trị của m bằng bao nhiêu
A. m = -5
B. m = 1
m = 3
D. m = -1
Trong không gian với hệ tọa độ Oxyz cho mặt cầu S : x − 1 2 + y 2 + z + 2 2 = 2 và mặt phẳng α : x + y − 4 z + m = 0 . Tìm các giá trị của m để α tiếp xúc với (S)
A. m ≤ - 15 hoặc m ≥ − 3
B. - 15 ≤ m ≤ - 3
C. m = - 3 hoặc m = - 15
D. m = 2 3 hoặc m = - 12
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆. Giá trị của bc bằng
A. - 10
B. 10
C. 12
D. - 20
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : 5 x - 2 y + 5 z - 1 = 0 và ( Q ) : x - 4 y - 8 z + 12 = 0 .Mặt phẳng (R) đi qua điểm M trùng với gốc tọa độ O, vuông góc với mặt phẳng (P) và tạo với mặt phẳng (Q) một góc α = 45 ° . Biết ( R ) : x + 20 y + c z + d = 0 Tính S = cd
A. 1
B. 2
C. 3
D. 0