Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ tọa độ Oxyz, cho điểm H 1 ; 2 ; − 2 . Mặt phẳng α đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của Δ A B C . Tính diện tích mặt cầu ngoại tiếp tứ diện OABC.
A. 81 π 2
B. 243 π 2
C. 81 π
D. 243 π
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (α) đi qua M(2;1;2) đồng thời cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho tứ diện OABC có thể tích nhỏ nhất. Phương trình mặt phẳng (α) là.
A. x+2y+z-1=0
B. 2x+y-2z-1=0
C. 2x+y+z-7=0
D. x+2y+z-6=0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2y-z+3=0 và điểm A(2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy,Oz lần lượt tại các điểm B,C khác O. Thể tích khối tứ diện OABC bằng
A. 8.
B. 16.
C. 8/3
D. 16/3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 y - z + 3 = 0 và điểm A(2;0;0). Mặt phẳng ( α ) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4 3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:
A. 8.
B. 16.
C. 8 3
D. 16 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 y − z + 3 = 0 và điểm A 2 ; 0 ; 0 .
Mặt phẳng α đi qua A, vuông góc với P , cách gốc tọa độ O một khoảng bằng 4 3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng
A. 8
B. 16
C. 8 3 .
D. 16 3 .
Trong không gian với hệ tọa độ Oxyz, tính thể tích tứ diện OABC biết A, B, C lần lượt là giao điểm của mặt phẳng 2x – 3y +4z + 24 = 0 với các trục Ox, Oy, Oz.
A. 288
B. 192
C. 96
D. 78
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x a + y 2 a + z 3 a = 1 (a>0) cắt ba trục Ox, Oy, Oz lần lượt tại 3 điểm A, B, C. Tính diện tích V của khối tứ diện OABC
A. V= a 3
B. V=3 a 3
C. V=2 a 3
D. V=4 a 3
Trong không gian với hệ tọa độ Oxyz, xét tứ diện ABCD có các cặp cạnh đối diện bằng nhau và điểm D khác phía với O so với mặt phẳng (ABC); đồng thời A, B, C lần lượt là giao điểm của các trục Ox, Oy, Oz và mặt phẳng α : x m + y m + 2 + z m - 5 = 1 (với m ≠ - 2 , m ≠ 0 , m ≠ 5 ). Tìm khoảng cách ngắn nhất từ tâm mặt cầu ngoại tiếp I của tứ diện ABCD đến O.
A. 20
B. 1 4
C. 36
D. 26 2