Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2y-z+3=0 và điểm A(2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy,Oz lần lượt tại các điểm B,C khác O. Thể tích khối tứ diện OABC bằng
A. 8.
B. 16.
C. 8/3
D. 16/3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ tọa độ Oxyz, cho điểm H 1 ; 2 ; − 2 . Mặt phẳng α đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của Δ A B C . Tính diện tích mặt cầu ngoại tiếp tứ diện OABC.
A. 81 π 2
B. 243 π 2
C. 81 π
D. 243 π
Trong không gian với hệ tọa độ Oxyz, tính thể tích tứ diện OABC biết A, B, C lần lượt là giao điểm của mặt phẳng 2x – 3y +4z + 24 = 0 với các trục Ox, Oy, Oz.
A. 288
B. 192
C. 96
D. 78
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;1;1) và mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C thỏa mãn OA=2OB. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 64 27
B. 10 3
C. 9 2
D. 81 16
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 y - z + 3 = 0 và điểm A(2;0;0). Mặt phẳng ( α ) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4 3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:
A. 8.
B. 16.
C. 8 3
D. 16 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 y − z + 3 = 0 và điểm A 2 ; 0 ; 0 .
Mặt phẳng α đi qua A, vuông góc với P , cách gốc tọa độ O một khoảng bằng 4 3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng
A. 8
B. 16
C. 8 3 .
D. 16 3 .
Trong không gian với hệ toạ độ Oxyz, có bao nhiêu mặt phẳng qua điểm M(1;1;2) và cắt trục trục toạ độ x′Ox, y′Oy,z′Oz lần lượt tại A,B,C khác gốc toạ độ O sao cho OA,OB,OC theo thứ tự lập thành một cấp số nhân và thể tích khối tứ diện OABC bằng 32 3 .
A. 3.
B. 5.
C. 2.
D. 4.
Trong không gian với hệ tọa độ Oxy cho mặt phẳng α : 2 x - y - 3 z = 4 . Gọi A ,B ,C lần lượt là giao điểm của mặt phẳng α với các trục tọa độ Ox, Oy, Oz. Thể tích tứ diện OABC bằng:
A. 1.
B. 2.
C. 32 9
D. 16 9