Đáp án C
Phương pháp:
Cách giải:
Ta tìm được
Khi đó ta có :
Vậy
Đáp án C
Phương pháp:
Cách giải:
Ta tìm được
Khi đó ta có :
Vậy
Trong không gian với hệ tọa độ Oxy cho mặt phẳng α : 2 x - y - 3 z = 4 . Gọi A ,B ,C lần lượt là giao điểm của mặt phẳng α với các trục tọa độ Ox, Oy, Oz. Thể tích tứ diện OABC bằng:
A. 1.
B. 2.
C. 32 9
D. 16 9
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x a + y 2 a + z 3 a = 1 (a>0) cắt ba trục Ox, Oy, Oz lần lượt tại 3 điểm A, B, C. Tính diện tích V của khối tứ diện OABC
A. V= a 3
B. V=3 a 3
C. V=2 a 3
D. V=4 a 3
Trong không gian với hệ tọa độ Oxyz, cho điểm H 1 ; 2 ; − 2 . Mặt phẳng α đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của Δ A B C . Tính diện tích mặt cầu ngoại tiếp tứ diện OABC.
A. 81 π 2
B. 243 π 2
C. 81 π
D. 243 π
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;1;1) và mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C thỏa mãn OA=2OB. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 64 27
B. 10 3
C. 9 2
D. 81 16
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C khác gốc tọa độ. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 18
B. 9
C. 6
D. 54
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M lần lượt cắt các tia Ox,Oy,Oz tại A,B,C khác O. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 54.
B. 6.
C. 9.
D. 18.
Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M 1 ; 3 ; 9 và cắt các tia Ox, Oy, Oz lần lượt tại A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a, b, c là các số thực dương. Tìm giá trị của biểu thức P = a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất.
A. P = 44
B. P = 39
C. P = 27
D. P = 16
Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M 1 ; 3 ; 9 và cắt các tia Ox, Oy, Oz lần lượt tại A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a, b, c là các số thực dương. Tìm giá trị của biểu thức P = a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất.
A. P = 44
B. P = 39
C. P = 27
D. P = 16