Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Panda 卐
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 21:16

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

Nguyễn Thành Nhân
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Songoku
23 tháng 2 2021 lúc 17:53

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 2 2021 lúc 19:49

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 2 2021 lúc 19:52

Bài 2.

a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)

ĐKXĐ : x khác -1

<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)

<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)

=> 3x( x + 1 ) = -2

<=> 3x2 + 3x + 2 = 0

Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x

=> phương trình vô nghiệm

b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)

ĐKXĐ : x khác 0 ; x khác 2

<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)

=> 4x2 - 7x + 14 = 4x2 - 8x

<=> 4x2 - 7x - 4x2 + 8x = -14

<=> x = -14 ( tm )

Vậy phương trình có nghiệm x = -14

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
Yeutoanhoc
25 tháng 2 2021 lúc 21:22

`1+(x-2)/(1-x)+(2x^2-5)/(x^3-1)=4/(x^2+x+1)(x ne 1)`

`<=>(x^3-1)/(x^3-1)-((x-2)(x^2+x+1))/(x^3-1)+(2x^2-5)/(x^3-1)=(4(x-1))/(x^3-1)`

`<=>x^3-1-(x-2)(x^2+x+1)+2x^2-5=4(x-1)`

`<=>x^3-1-(x^3-x^2-x-2)+2x^2-5=4x-4`

`<=>x^3-1-x^3+x^2+x+2+2x^2-5-4x+4=0`

`<=>3x^2-3x+2=0`

`<=>x^2-2/3 x+2/3=0`

`<=>x^2-2.x. 1/3+1/9+5/9=0`

`<=>(x-1/3)^2=-5/9` vô lý

Vậy phương trình vô nghiệm.

Nguyễn Lê Phước Thịnh
25 tháng 2 2021 lúc 22:26

ĐKXĐ: \(x\ne1\)

Ta có: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

Suy ra: \(x^3-1-\left(x^3+x^2+x-2x^2-2x-2\right)+2x^2-5=4x-4\)

\(\Leftrightarrow x^3-1-x^3+x^2+x+2+2x^2-5-4x+4=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

mà 3>0

nên x(x-1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)

Vậy: S={0}

Hoàng an
Xem chi tiết
Vô danh
18 tháng 3 2022 lúc 8:08

\(a,4+3x=25-4x\\ \Leftrightarrow7x=21\\ \Leftrightarrow x=3\\ b,\left(x-1\right)^2+\left(x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c, ĐKXĐ:\(x\ne-1,x\ne2\)

\(\dfrac{1}{x+1}+\dfrac{3}{x-2}=\dfrac{9}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{9}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x-2+3x+3-9}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow4x-8=0\\ \Leftrightarrow x=2\left(ktm\right)\)

Nguyễn acc 2
Xem chi tiết
Nguyễn Ngọc Huy Toàn
11 tháng 4 2022 lúc 12:18

1.\(\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{x^2-x-6}\)

\(\Leftrightarrow\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{\left(x+2\right)\left(x-3\right)}\)

\(ĐK:x\ne3;-2\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x+2\right)+x\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}=\dfrac{x^2+6}{\left(x+2\right)\left(x-3\right)}\)

\(\Leftrightarrow\left(x+2\right)\left(x+2\right)+x\left(x-3\right)=x^2+6\)

\(\Leftrightarrow x^2+4x+4+x^2-3x-x^2-6=0\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

 

Nguyễn Ngọc Huy Toàn
11 tháng 4 2022 lúc 12:24

b.\(\left(x+1\right)^2+\left|x-1\right|=x^2+4\)

\(\Leftrightarrow\)    \(\left(x+1\right)^2+x-1=x^2+4\) hoặc   \(\left(x+1\right)^2+1-x=x^2+4\)

Xét \(\left(x+1\right)^2+x-1=x^2+4\)

\(\Leftrightarrow x^2+2x+1+x-1-x^2-4=0\)

\(\Leftrightarrow3x-4=0\)

\(\Leftrightarrow x=\dfrac{4}{3}\)

Xét \(\left(x+1\right)^2+1-x=x^2+4\)

\(\Leftrightarrow x^2+2x+1+1-x-x^2-4=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(S=\left\{\dfrac{4}{3};2\right\}\)

2.\(1-\dfrac{x-1}{3}< \dfrac{x+3}{3}-\dfrac{x-2}{2}\)

\(\Leftrightarrow\dfrac{6-2\left(x-1\right)}{6}< \dfrac{2\left(x+3\right)-3\left(x-2\right)}{6}\)

\(\Leftrightarrow6-2\left(x-1\right)< 2\left(x+3\right)-3\left(x-2\right)\)

\(\Leftrightarrow6-2x+2< 2x+6-3x+6\)

\(\Leftrightarrow-x< 4\)

\(\Leftrightarrow x>4\)

Vậy \(S=\left\{x|x>4\right\}\)

0 4

mai lan hương
Xem chi tiết
Phan Thanh Nhã
18 tháng 4 2017 lúc 16:13

Đề ntn hả bạn: \(\frac{1}{x^2-x}\)+\(\frac{1}{x^2+x}\)+\(\frac{1}{x^2+3x}\)+ 2 = \(\frac{3}{4}\)?