Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn đình
Xem chi tiết
Đoán Xem
19 tháng 7 2023 lúc 9:25

Tran Phut
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2023 lúc 21:09

a: Xét ΔABC vuông tại A có BC^2=AB^2+AC^2

=>BC^2=5^2+12^2=169

=>BC=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot13=5\cdot12=60\)

=>AH=60/13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(sinBAH=\dfrac{BH}{AB}=\dfrac{25}{13}:5=\dfrac{5}{13}\)

=>\(\widehat{BAH}\simeq22^0\)

b: HB=HD

=>HD=25/13(cm)

BD=25/13*2=50/13(cm)

BD+DC=BC

=>DC=BC-BD=13-50/13=119/13(cm)

=>R=DC/2=119/26(cm)

c: Xét (O) có

ΔCMD nội tiếp

CD là đường kính

Do đó: ΔCMD vuông tại M

Xét ΔABD có

AH vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD

Xét tứ giác AHDM có

\(\widehat{AHD}+\widehat{AMD}=180^0\)

=>AHDM là tứ giác nội tiếp

=>\(\widehat{ADH}=\widehat{AMH}=\widehat{ABD}\)

ΔAMD vuông tại M

=>AM<AD

mà AD=BA

nên AM<AB

d: \(DM\perp AC;AB\perp AC\Leftrightarrow\)DM//AB

=>\(\widehat{MDA}=\widehat{DAB}\)

=>\(\widehat{MDA}=2\cdot\widehat{DAH}\)

Trang Be
Xem chi tiết
Trần Thị Khánh Ly
Xem chi tiết
Khoa Bùi
Xem chi tiết
baiop
Xem chi tiết
An Thy
13 tháng 7 2021 lúc 9:37

a) Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+12^2}=20\left(cm\right)\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=\dfrac{48}{5}\left(cm\right)\)

Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16^2}{20}=\dfrac{64}{5}\left(cm\right)\)

Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\Rightarrow\angle B\approx37\)

b) tam giác AHE vuông tại H có HN là đường cao \(\Rightarrow AN.AE=AH^2\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH^2=HB.HC\)

\(\Rightarrow AN.AE=HB.HC\)

c) tam giác AHB vuông tại H có HM là đường cao \(\Rightarrow AH^2=AM.AB\)

\(\Rightarrow AN.AE=AM.AB\Rightarrow\dfrac{AM}{AE}=\dfrac{AN}{AB}\)

Xét \(\Delta AMN\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle EABchung\\\dfrac{AM}{AE}=\dfrac{AN}{AB}\end{matrix}\right.\)

\(\Rightarrow\Delta AMN\sim\Delta AEB\left(c-g-c\right)\Rightarrow\dfrac{AE}{AM}=\dfrac{BE}{MN}\)

mà \(BE=3MN\Rightarrow\dfrac{BE}{MN}=3\Rightarrow\dfrac{AE}{AM}=3\Rightarrow AE=3AM\)

undefined

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 13:35

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot20=16\cdot12=192\)

hay AH=9,6(cm)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=16^2-9.6^2=163.84\)

hay HB=12,8(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)

hay \(\widehat{B}\simeq37^0\)

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 13:37

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHE vuông tại H có HN là đường cao ứng với cạnh huyền AE, ta được:

\(AN\cdot AE=AH^2\)(2)

Từ (1) và (2) suy ra \(HB\cdot HC=AN\cdot AE\)

Bảo Ngọc
Xem chi tiết
Bảo Ngọc
23 tháng 8 2021 lúc 10:33

Mọi ng giúp mình nhé

 

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 14:15

Bạn vào ô công thức để nhập lại số đo góc đi bạn. Khó hiểu quá

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 21:45

a: BC=căn 3^2+4^2=5cm

HB=AB^2/BC=1,8cm

HC=5-1,8=3,2cm

AH=3*4/5=2,4cm

b: 

1: ΔAHB vuông tại H có HE là đường cao

nên AE*EB=EH^2

2: ΔHAC vuông tại H có HF là đường cao

nên AF*FC=HF^2

=>AE*EB+AF*FC=HE^2+HF^2=EF^2=AH^2

lường khắc hiệp
Xem chi tiết

a: Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD

b: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)

nên ΔABD đều

c: Ta có: ΔABD đều

=>\(\widehat{BAD}=60^0\)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}=90^0-60^0=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔDHA=ΔDEC

=>AH=EC

d: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)

=>\(BC=5\cdot2=10\left(cm\right)\)

Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{AH}{5}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)