cho tam giác MPQ gọi I K lần lượt là trung điểm của MP và MQ biết PQ=15cm độ dài đoạn thẳng IK là
bài 1. Cho tam giác MPQ vuông tại M . MP < MQ . I là trung điểm của PQ . Từ I kẻ đường thẳng song song với MQ và MP lần lượt cắt MP tại K và cắt MQ tại H .
a. Chứng minh tứ giác KHQP là hình thang.
b. Chứng minh tứ giác MKIH là hình chữ nhật.
c. Gọi O là trung điểm của MI . Chứng minh K đối xứng với H qua O.
bài 2.
Cho tam giác ABC vuông tại A , BC = 8 cm . Hai trung tuyến BM và CN cắt nhau tại G.
a. Tính MN.
b. Gọi K và I lần lượt là trung điểm của BG và CG.Chứng minh NMQK là hình bình hành.
c. Trên trung tuyến AI của tam giác ABC , lấy điểm H sao cho IA = IH . Chứng minh tứ giác ABHC là hình chữ nhật.
MONG MỌI NGƯỜI GIÚP MÌNH VỚI Ạ
Bài 2:
b: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
K là trung điểm của GB
I là trung điểm của GC
Do đó: KI là đường trung bình của ΔGBC
Suy ra: KI//BC và \(KI=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra NM//KI và NM=KI
Xét tứ giác NMIK có
NM//KI
NM=KI
Do đó: NMIK là hình bình hành
Cho tứ giác MNPQ. Gọi A, B, C lần lượt là trung điểm của MQ, MP, NP. a) So sánh độ dài các đoạn thẳng AB và PQ, BC và MN
cho tam giác MPQ nhọn có MP>MQ gọi I là trung điểm của PQ trên tia đối của tia IM lấy điểm N sao cho IM=IN a) chứng minh tứ gicas MPNQ là hình bình hành b) gọi K là điểm đối của M qua đường thẳng PQ H là giao điểm của PQ và MK chứng minh MK vuông góc với KN c) tứ giác PQKN là hình gì vì sao
a: Xet tứ giác MPNQ có
I là trung điểm chung của MN và PQ
nên MPNQ là hình bình hành
b:M đối xứng K qua PQ
nên MK vuông góc với PQ tại trung điểm của MK
=>H là trung điểm của MK
Xét ΔMKN có MH/MK=MI/MN
nên HI//KN
=>KN vuông góc với KM
c: M đối xứng K qua PQ
nên QM=QK
=>QK=PN
Xét tứ giác PQNK có
PQ//NK
PN=QK
Do đó: PQNK là hình thang cân
cho tam giác mnp vuông tại m đường trung tuyến pq a cho bt np=10cm mp=6cm.
a)tính độ dài đoạn thẳng mn,nq
b) trên tia đối của tia qp lấy điểm d sao cho qd =qp
cm tam giác qmp= tam giác qnd và mp=nd
c) cmr mp+np > 2qp
d) gọi k là điểm trên đoạn thẳng mq sao cho mk=2/3mq
gọi h là giao điểm của pk và md
y là giao điểm của nh và pd
cmr pd=3yd
a: \(MN=\sqrt{NP^2-MP^2}=8\left(cm\right)\)
nên NQ=4(cm)
b: Xét ΔQMP và ΔQND có
QM=QN
\(\widehat{MQP}=\widehat{NQD}\)
QP=QD
Do đó; ΔQMP=ΔQND
Suy ra: MP=ND
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
Cho tam giác ABC đều , O là trọng tâm của tam giác . M thuộc BC, kẻ MP và MQ lần lượt vuông góc AB và AC, các đường vuông góc này cắt OB và OC ở I và K.
a) C/m MIOK là hbh
b) Gọi R là giao điểm PQ và OM. C/m R là trung điểm của đoạn PQ
a) O là trọng tâm tam giác đều ABC nên O là trực tâm của tam giác đó, do đó OB \(\perp\)AC,\(\perp\)AB , suy ra : OC\(//\)MP, OB \(//\)MQ
Tứ giác MIOK là hình bình hành vì có các cạnh đối song song.
b) Dễ thấy các tam giác :
\(\Delta MKC\approx\Delta MIB\left(g-g\right)\) , nên ...
Từ đó bạn giải tiếp nha
Muốn xem ảnh thì vào thống kê hỏi đáp của mình nha vi mình chưa phải là QTV nê chưa đăng được ảnh
Học tốt!
HT nha bạn
Cho hình thang MNPQ (MN // PQ). A và B theo thứ tự là trung điểm của MQ và NP. Gọi và K lần lượt là giao điểm của AB với NQ và MP. Biết MN = 8cm và PQ = 16cm a) Chứng minh AI=KB >) Tính AI, KB và IK
a: Xét hình thang MNPQ có
A là trung điểm của MQ
B là trung điểm của NP
Do đó: AB là đường trung bình của hình thang MNPQ
Suy ra: AB//MN//PQ
Xét ΔQMN có AI//MN
nên \(\dfrac{AI}{MN}=\dfrac{AQ}{QM}=\dfrac{1}{2}\left(1\right)\)
Xét ΔPMN có KB//MN
nên \(\dfrac{KB}{MN}=\dfrac{1}{2}\left(2\right)\)
Từ (1) và (2) suy ra AI=KB
Cho tứ giác ABCD có: M; N; P; Q lần lượt là trung điểm của các cạnh AB; BC; CD; DA.
a) Chứng minh MN // PQ
b) Gọi I; K; H lần lượt là trung điểm của MQ; MP; NP. Chứng minh ba điểm I; K; H thẳng hàng
Bài này ko khó lắm đâu. Bạn chỉ cần nghĩ một chút thôi.
a,Nối A với C.
Xét tam giác BAC có: M là trung điểm của AB, N là trung điểm của BC
Suy ra: MN là đường trung bình của tam giác BAC
Nên MN song song với BC.(1)
Xét tam giác ACD có: P là trung điểm của CD và Q là trung điểm của AD.
Do đó: PQ là đường trung bình của tam giác ACD
Nên PQ song song với BC. (2)
Từ (1) và (2), ta có: MN song song với PQ.
b, Xét tam giác MQP có: I là trung điểm của MQ, K là trung điểm của MP
Vì thế IK là đường trung bình của tam giác MQP
Suy ra: IK song song với PQ.
Tương tự, KH là đường trung bình của tam giác MNP
Nên KH song song với MN.
Mà MN song song với PQ
Do đó: KH song song với PQ
Qua điểm K nằm ngoài đường thẳng PQ, có 2 đường thẳng IK,KH cùng song song với PQ nên theo tiên đề Ơclít , 3 điểm I,K,H thẳng hàng.
Chúc bạn học tốt.
cho m là trung điểm của đoạn thẳng pq , biết mq = 3cm .tính độ dài doạn thẳng mp,pq .trên tia mq lấy điểm k sao cho mk =6cm ,chứng tỏ q là trung điểm của đoạn thẳng mk ? .trên hình vẽ có ? đoạn thẳng , kể tên
a: Vì M là trung điểm của PQ
nên MQ=MP=3cm và QP=2MQ=6cm
b: Trên tia MQ, ta có: MQ<MK
nên điểm Q nằm giữa hai điểm M và K
mà MQ=1/2MK
nên Q là trung điểm của MK