Cho tam giác ABC vuông tại A có AC bằng 6 cm AB bằng 8 cm kẻ phân giác AD trung tuyến AM khi đó diện tích tam giác AMD là
Cho tam giác ABC vuông tại A có AB bằng 3 cm BC = 5 cm a tính AC, góc B góc c b) phân giác của góc A cắt BC tại E Tính BE CE d)kẻ đường c kẻ đường cao AH và đường trung tuyến AM tính diện tích tam giác AMH
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=5cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)
Cho tam giác ABC vuông tại A. Đường trung tuyến AM.Từ M , kẻ MD vuông góc với AB tại D, kẻ ME vuông góc với AC tại E.
a.Chứng minh tứ giác ADME là hình chữ nhật
b.Cho AB =6 cm, AC= 8 cm. Tính diện tích tam giác ABC.
c.Tìm điều kiện của tam giác ABC để ADME là hình vuông
b: S=12cm2
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
\(a,\) Vì \(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\) nên ADME là hình chữ nhật
\(b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
\(c,ADME\) là hình vuông \(\Leftrightarrow AM=AE\)
Mà D là trung điểm BC, \(MD\text{//}AC\left(\bot AB\right);ME\text{//}AB\left(\bot AC\right)\) nên M,E lần lượt là trung điểm AB,AC
Do đó ADME là hình vuông \(\Leftrightarrow AM=AE\Leftrightarrow2AM=2AE\Leftrightarrow AB=AC\)
\(\Leftrightarrow\Delta ABC\) vuông cân tại A
Cho tam giác ABC vuông tại A biết AM = 6 cm , AC=8cm đường cao AH. Gọi DE lần lượt là chân đường vuông góc kẻ từ H đến AB và AC .
a, Tính diện tích tam giác ABC
b, Chứng minh : AM=DE
c,Kẻ trung tuyến AM của tam giác ABC. Chứng minh : AM vuông góc DE
Cho tam giác ABC cân tại A có Ab bằng 6 com,Ac = 8 cm a, Tính Bc b,Trên tia đối của Ab lấy M sao cho AB = AM . CMR tam giác ABC bằng tam giác ACM Từ đó chứng minh CA là phân giác của góc BCM c,Kẻ Ah vuông góc BC,AK vuông góc CM. chứng minh HK song song BM d,HK cắt AC tại I. chứng minh AC là đường trung trực của HK
Cho tam giác ABC cân tại A có Ab bằng 6 com,Ac = 8 cm a, Tính Bc b,Trên tia đối của Ab lấy M sao cho AB = AM . CMR tam giác ABC bằng tam giác ACM Từ đó chứng minh CA là phân giác của góc BCM c,Kẻ Ah vuông góc BC,AK vuông góc CM. chứng minh HK song song BM d,HK cắt AC tại I. chứng minh AC là đường trung trực của HK
bài toán vô lí quá nếu mà cân tại A thì AB = AC chứ đáng lẽ ra là vuông tại A chứ:
nếu là vuông tại A thì có:
a.Xét tam giác ABC vuông tại A:
BC2=AB2+AC2(định lí pytago)
hay BC2=62+82
BC2=36+64
BC2= \(\sqrt{100}\)
BC=10(cm)
vậy BC=10cm
Xét ΔABC và ΔACM có:
AB=AM(gt)
AC chung
^CAB=^CAM=90o
=>ΔABC=ΔACM(trường hợp gì tự biết) :)
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Từ M kẻ ME vuông góc với AB (E thuộc AB), MF vuông góc với AC (F thuộc AC)
a) Tứ giác AEMF là hình gì? Vì sao?
b) Cho biết AB = 6 cm, AC = 8 cm. Tính diện tích tứ giác AEMF
c) Gọi N là điểm đối xứng với A qua M. Chứng minh: tứ giác ABNC là hình chữ nhật
d) Tam giác ABC có thêm điều kiện gì để tứ giác AEMF là hình vuông
(Gải nhanh giúp mik với! Mk cần gấp! Cảm ơn)
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
=>AE=3cm
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
=>AF=4cm
\(S_{AEMF}=AE\cdot AF=3\cdot4=12\left(cm^2\right)\)
c: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
Bài 6: Cho tam giác ABC vuông tại A, AB = 4cm, AC = 3 cm, trung tuyến AD, kẻ DK vuông góc với với AB, kẻ DH vuông góc với AC
a. Tứ giác AKDH là hình gì? Vì sao?
b. Tính độ dài AD
c. Tính diện tích tam giác ABD
Bài 7: Cho ABC vuông ở A (AB < AC ), đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng kẻ qua D song song với AB cắt BC và AC lần lượt ở M và N. Chứng minh:
a. Tứ giác ABDM là hình thoi.
b. AM CD .
c. Gọi I là trung điểm của MC; chứng minh IN HN.
Bài 6:
a: Xét tứ giác AKDH có
\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)
Do đó: AKDH là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=2,5(cm)
a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)
b, áp dụng đl pytago vào tam giác vuông ABC có :
\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)
vì AD là trung tuyến tam giác vuông ABC nên :
\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)
c,vì AKDH là hình chữ nhật nên : DH//KA
mà D là trung điểm BC
=>H là trung điểm AC
<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\)
vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)
\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)
Cho tam giác ABC vuông tại A, AB = 4cm, AC = 3 cm, trung tuyến AD, kẻ DK vuông ? góc với với AB, kẻ DH vuông góc với AC
a. Tứ giác AKDH là hình gì? Vì sao?
b. Tính độ dài AD
c. Tính diện tích tam giác ABD
a/ Tứ giác AKDH có:
^BAC = ^AKD = ^AHD = 90° (GT).
=>AKDH là hình chữ nhật
b/ Áp dụng định lí Pythagoras vào ∆ABC vuông tại A có:
BC^2=AB^2+AC^2.
=>BC^2=9+16=25
=> BC = 5 (cm)
Xét ∆ABC vuông tại A có AD là đường trung tuyến.
=>AD = 1/2BC=2,5 (cm)
b/ Có:
DK vuông góc vs AB.
AB vuông góc vs AC.
=> DK // AC.
Xét ∆ABC có:
DK // AC, K thuộc AB.
D là trung điểm BC.
=> K là trung điểm AB (đ/l)
=> KD là đường trung bình ∆ABC
=> KD = 1/2AC=1,5(cm)
Có
S_(∆ABC)=1/2.KD.AB
=1/2.4.1,5
=2.1,5=3 (cm²)
Cho tam giác ABC có AB bằng 4 cm AC bằng 12 cm BC = 6 cm các đường phân giác trong AD be cắt AB tại I
a, Tính BD và CD
b, Gọi AM là đường trung tuyến và G là trọng tâm tam giác ABC . C/m IG//BC và tính độ dài IG