Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thanh Ngọc
Xem chi tiết
Trần Đức Vinh
Xem chi tiết
Akai Haruma
6 tháng 11 2023 lúc 18:58

Lời giải:

$M=(x^{10}-24x^9)-(x^9-24x^8)+(x^8-24x^7)-(x^7-24x^6)+(x^6-24x^5)-(x^5-24x^4)+(x^4-24x^3)-(x^3-24x^2)+(x^2-24x)-(x-24)+1$

$=x^9(x-24)-x^8(x-24)+x^7(x-24)-.....+x(x-24)-(x-24)+1$

$=(x-24)(x^9-x^8+x^7-...+x-1)+1$

$=0.(x^9-x^8+....+x-1)+1=1$

Trần Đức Vinh
Xem chi tiết
Nguyễn Đức Trí
24 tháng 8 2023 lúc 19:50

\(M=x^{10}-25x^9+25x^8-25x^7+...-25x^3+25x^2-25x+25\)

Ta thấy : \(x=24\Rightarrow x+1=25\)

\(\Rightarrow M=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)

\(M=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^4-x^3+x^3+x^2-x^2-x+x+1\)

\(\Rightarrow M=1\)

Vậy \(M=1\left(tạix=24\right)\)

Pham Trong Dung
18 tháng 10 lúc 20:24

M=x 

10

 −25x 

9

 +25x 

8

 −25x 

7

 +...−25x 

3

 +25x 

2

 −25x+25

 

Ta thấy : 

x

=

24

x

+

1

=

25

x=24⇒x+1=25

 

M

=

x

10

(

x

+

1

)

x

9

+

(

x

+

1

)

x

8

(

x

+

1

)

x

7

+

.

.

.

(

x

+

1

)

x

3

+

(

x

+

1

)

x

2

(

x

+

1

)

x

+

(

x

+

1

)

⇒M=x 

10

 −(x+1)x 

9

 +(x+1)x 

8

 −(x+1)x 

7

 +...−(x+1)x 

3

 +(x+1)x 

2

 −(x+1)x+(x+1)

 

M

=

x

10

x

10

x

9

+

x

9

+

x

8

x

8

x

7

+

.

.

.

x

4

x

3

+

x

3

+

x

2

x

2

x

+

x

+

1

M=x 

10

 −x 

10

 −x 

9

 +x 

9

 +x 

8

 −x 

8

 −x 

7

 +...−x 

4

 −x 

3

 +x 

3

 +x 

2

 −x 

2

 −x+x+1

 

M

=

1

⇒M=1

 

Vậy 

M

=

1

(

t

i

x

=

24

)

M=1(tạix=24)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 12 2018 lúc 15:35

Ta có: f"(x) = 2x - 1

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2017 lúc 12:46

 

 

Giải bài 12 trang 47 sgk Giải tích 12 | Để học tốt Toán 12

Do đó phương trình vô nghiệm.

 

Tuấn Anh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 2 2020 lúc 22:50

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(6\left(x^2+\frac{1}{x^2}\right)+25\left(x-\frac{1}{x}\right)+12=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)

\(\Rightarrow6\left(t^2+2\right)+25t+12=0\)

\(\Leftrightarrow6t^2+25t+24=0\Rightarrow\left[{}\begin{matrix}t=-\frac{3}{2}\\t=-\frac{8}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-\frac{3}{2}\\x-\frac{1}{x}=-\frac{8}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\3x^2+8x-3=0\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Quang Trung
Xem chi tiết
Tuấn
13 tháng 2 2016 lúc 21:22

đây là pt đỗi xứng bậc chẵn bạn ơi
cos cachs giải đó bạn

Trần Đức Thắng
13 tháng 2 2016 lúc 21:23

(+) Kiểm tra x = 0 , sau đó chia cả hai vế cho x^2

(+) đặt x- 1/x = a => x^2 + 1/x^2 = a^2 + 2 

Thay vô giải pt bậc hai 

Nguyễn Quang Trung
13 tháng 2 2016 lúc 21:23

à ha , tự nhiên tui quên mất ^^! , thks nhá , k cần giải nữa đâu , bik giải gòi 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 7 2019 lúc 16:03

Cả ba phương trình trên đều là phương trình trùng phương.

 3x4 – 12x2 + 9 = 0 (1)

Đặt x2 = t, t ≥ 0.

(1) trở thành: 3t2 – 12t + 9 = 0 (2)

Giải (2):

Có a = 3; b = -12; c = 9

⇒ a + b + c = 0

⇒ (2) có hai nghiệm t1 = 1 và t2 = 3.

Cả hai nghiệm đều thỏa mãn điều kiện.

+ t = 3 ⇒ x2 = 3 ⇒ x = ±√3.

+ t = 1 ⇒ x2 = 1 ⇒ x = ±1.

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tên ?
Xem chi tiết
👁💧👄💧👁
13 tháng 7 2021 lúc 14:37

1. 

\(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\\ =\left(12x^2+6x\right)\left(y+z+y-z\right)\\ =2y\left(12x^2+6x\right)\\ =2y.6x\left(2x+1\right)\\ =12xy\left(2x+1\right)\)

2. 

\(x\left(x-6\right)+10\left(x-6\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

Vậy \(x\in\left\{6;-10\right\}\) là nghiệm của pt

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 14:38

Bài 1:

Ta có: \(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\)

\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)

\(=6x\left(2x+1\right)\cdot2y\)

\(=12xy\left(2x+1\right)\)

Bài 2: 

Ta có: \(x\left(x-6\right)+10\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)