Chứng tỏ rằng: 10^2120+2120 chia hết cho 30.
Ghi Rõ Chi tiết giúp Mình
a) Chứng tỏ rằng: 102120 +2120 chia hết cho 30
b) Cho a vá b là hai số tự nhiên không nguyên tố cùng nhau và thoả mãn :
a=2n+3 , b=5n+2 (n ϵ N) . Tìm ƯCLN(a,b)
giúp em với ạ
a) Dễ thấy P = 102120 + 2120
= 102120 + 212.10
= 10(102119 + 212)
=> P \(⋮10\)
Lại có P = 102120 + 2120
= 10(102119 + 212)
= 10.(1000...00 + 212)
2119 số 0
= 10.1000...0212
2116 số 0
Tổng các chữ số của số S = 1000...0212 (2116 chữ số 0)
là 1 + 0 + 0 + 0 +.... + 0 + 2 + 1 + 2 (2116 hạng tử 0)
= 1 + 2 + 1 + 2 = 6 \(⋮3\)
=> S \(⋮3\Rightarrow P=10S⋮3\)
mà \(\left\{{}\begin{matrix}P⋮10\\P⋮3\\\left(10,3\right)=1\end{matrix}\right.\Rightarrow P⋮10.3\Rightarrow P⋮30\)
Gọi (a,b) = d \(\left(d\inℕ^∗;d\ne1\right)\)
=> \(\left\{{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5.(2n+3)⋮d\\2.(5n+2)⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10n+15⋮d\left(1\right)\\10n+4⋮d\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2) ta được
(10n + 15) - (10n + 4) \(⋮d\)
<=> 11 \(⋮d\)
\(\Leftrightarrow d\in\left\{1;11\right\}\) mà d \(\ne1\)
<=> d = 11
Vậy (a;b) = 11
Chứng minh rằng: A = 2 + 22 + 23 + …+ 2120 chia hết cho 7; 21; 31
Chứng minh rằng: A = 2 + 22 + 23 + ... + 2120 chia hết cho 7, 31 và 21
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=14+2^3\cdot14+...+2^{117}\cdot14\)
\(=14\cdot\left(1+2^3+...+2^{117}\right)⋮7\)
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=62+2^5\cdot62+...+2^{115}\cdot62\)
\(=62\cdot\left(1+2^5+...+2^{115}\right)⋮31\)
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=126+126\cdot2^6+...+126\cdot2^{114}\)
\(=126\cdot\left(1+2^6+...+2^{114}\right)⋮21\)
Cho A = 2 + 22 + 23 + … + 2119 + 2120 chứng tỏ rằng:
a) A chia hết cho 3 b) A chia hết cho 7
a) 6100 - 1 chia hết cho 5
b) 2120 - 1110 chia hết cho 2 và 5
c)3 + 32 + 33 +....+ 360 chia hết cho 4 và 13
giúp mình nha/Mình cảm mơn trc
a, 6100 - 1 = (6 . 6 . 6 ..... 6) - 1 = [(...6) . (...6) . (...6) ..... (...6)] - 1 = (...6) - 1 = ...5 \(⋮\) 5
b, 2120 - 1110 = (21 . 21 . 21 . 21 . 21..... 21) - (11 . 11 . 11 . 11 ..... 11) = [(...1) . (...1) . (...1) . (...1).....(...1)] - [(...1) . (...1) . (...1) . (...1).....(...1)] = (...1) - (...1) = ....0 \(⋮\) 2; \(⋮\) 5
Chứng minh tổng A=2+22+23+...+2118+2119+2120 chia hết cho 7
\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2^2+2^3\right)+...+2^{118}\left(1+2^2+2^3\right)\\ A=\left(1+2^2+2^3\right)\left(2+...+2^{118}\right)\\ A=7\left(2+...+2^{118}\right)⋮7\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7=7\left(2+2^4+...+2^{118}\right)⋮7\)
chứng minh A = 2 + 22 + 23 + … + 2120 chia hết cho 7, 31 và 21.
Chứng minh rằng
1) ( 88 + 220 ) ⋮ 17
2) A = 2 + 22 + 23 + … + 2120 chia hết cho cả 3; 7 và 15.
\(1,8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
\(2,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\\ A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\\ A=3\left(2+2^3+...+2^{119}\right)⋮3\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{118}\right)=7\left(2+...+2^{118}\right)⋮7\\ A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(2+...+2^{117}\right)=15\left(2+...+2^{117}\right)⋮15\)
Mọi người giải giúp em với ạ. Em đang cần gấp !!!
chứng tỏ rằng : 10^50 + 44 chia hết cho 2 và 9
Chiều em đi học rồi mong m.n giúp , giải chi tiết ạ
Vì tổng 1050+44 có chữ số tận cùng là chữ số chẵn nên \(⋮\)2
Để 1050+44 \(⋮\)9 thì 1+0+0+...+0+4+4 \(⋮\)9
=9\(⋮\)9
Vậy 1050+44 \(⋮\)2,\(⋮\)9
\(10^{50}+44⋮2\)( vì có chữ số tận cùng là chẵn )
\(10^{50}-1=\left(100...0\right)-1\)
\(=\left(99...9\right)⋮9\)
\(\Rightarrowđpcm\)