Cho \(Q=a^3-3a^2+3a-1/a^2-1\)
a) Rút gọn Q
b) Tìm giá trị Q khi |a|=5
Cho \(Q=\frac{a^3-3a^2+3a-1}{a^2-1}\)
a, rút gọn Q
b, Tìm giá trị Q khi /a/ = 5
\(a,Q=\frac{a^3-3a^2+3a-1}{a^2-1}=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)^2}{a+1}.\)
b, ta có : \(/a/=5\Rightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
thay a = -5 vào Q
\(\Rightarrow Q=\frac{\left(-5-1\right)^2}{-5+1}=\frac{36}{-4}=-9\)
thay a = 5 vào Q
\(\Rightarrow Q=\frac{\left(5-1\right)^2}{5+1}=\frac{16}{6}=\frac{8}{3}\)
KL : Q = 8/3 tại x=5
\(\text{Đ}K\text{X}\text{Đ}:a\ne1\)
a) Ta có: \(Q=\frac{a^3-3a^2+3a-1}{a^2-1}=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(a+1\right)}\)
Vậy ....
b) Ta có: \(\left|a\right|=5\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
Với a=5 ta có: \(Q=\frac{\left(5-1\right)^2}{5+1}=\frac{16}{6}=\frac{8}{3}\)
Với a=-5 ta có: \(Q=\frac{\left(-5-1\right)^2}{-5+1}=\frac{36}{-4}=-9\)
cho Q =\(\frac{a^2-3a^2+3a-1}{a^2-1}\)
a, rút gọn Q
b, tìm giá trị của Q khi /a/ =5
Cho Q=\(\dfrac{a^3-3a^2+3a-1}{a^2-1}\)
a,Rút gọn Q
b,Tìm giá trị của Q khi |a|=5
`Q=(a^3-3a^2+3a-1)/(a^2-1)`
`a)ĐK:a^2-1 ne 0<=>a ne +-1`
`Q=(a^3-3a^2+3a-1)/(a^2-1)`
`=(a-1)^3/((a-1)(a+1))`
`=(a-1)^2/(a+1)`
`b)|a|=5`
`<=>` \(\left[ \begin{array}{l}a=5\\a=-5\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}Q=\dfrac{(5-1)^2}{5+1}=\dfrac83\\Q=\dfrac{(-5-1)^2}{-5+1}=-9\end{array} \right.\)
Cho biểu thức K= \(\left(\frac{a+3}{3a}+\frac{2}{a+1}-3\right):\frac{2-4a}{a+1}-\frac{3a+1-a^2}{3a}\)
a)Tìm điều kiện để K xác định
b) Rút gọn K
c)tìm K để a=2005
d) Tìm a để K có giá trị âm
f) Tìm a thuộc Z để K có giá trị dương
Cho biểu thức D=(\(\dfrac{a-1}{3a+\left(a-1\right)^2}\)-\(\dfrac{1-3a+a^2}{a^3-1}\)-\(\dfrac{1}{a-1}\)) : \(\dfrac{a^2+1}{1-a}\)
a) Tìm những giá trị của a để D xác định
b)Rút gọn D
c)Tìm giá trị của a để \(\dfrac{1}{D}\)nhỏ nhất và tìm giá trị nhỏ nhất đó
`a)D` xác định `<=>a-1 ne 0<=>a ne 1`
`b)` Với `a ne 1` có:
`D=([a-1]/[a^2+a+1]-[1-3a+a^2]/[(a-1)(a^2+a+1)]-1/[a-1]).[1-a]/[a^2+1]`
`D=[(a-1)^2-1+3a-a^2-a^2-a-1]/[(a-1)(a^2+a+1)].[-(a-1)]/[a^2+1]`
`D=[a^2-2a+1-1+3a-a^2-a^2-a-1]/[(-a^2-1)(a^2+a+1)]`
`D=[-a^2-1]/[(-a^2-1)(a^2+a+1)]=1/[a^2+a+1]`
`c)` Với `a ne 1` có:
`1/D=1/[1/[a^2+a+1]]=a^2+a+1=(a+1/2)^2+3/4`
Vì `(a+1/2)^2 >= 0 AA a ne 1`
`=>(a+1/2)^2+3/4 >= 3/4 AA a ne 1`
Hay `1/D >= 3/4 AA a ne 1=>1/D _[mi n]=3/4`
Dấu "`=`" xảy ra `<=>a=-1/2` (t/m).
cho biểu thức
Q = <(a+2)/(a-2)-(a-2)/(a+2)-(4a^2)(/4-a^2)>:(a^2-3a)/10a-5a^2)
a, Rút gọn Q
b, Tìm các gtrị nguyên của a để Q chia hết 20
a: \(Q=\left(\dfrac{a^2+4a+4-a^2+4a-4+4a^2}{\left(a-2\right)\left(a+2\right)}\right):\dfrac{a\left(a-3\right)}{5a\left(2-a\right)}\)
\(=\dfrac{4a^2+8a}{\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-5\left(a-2\right)}{a-3}\)
\(=\dfrac{-20a}{a-3}\)
b: Q chia hết cho 20 thì a/a-3 là số nguyên
=>\(a-3\in\left\{1;-1;3;-3\right\}\)
=>a=4 hoặc a=6
Cho Q=\(\dfrac{a^3-3a^2+3a-1}{a^2-1}\)
a. Rút gọn Q
b. Tìm giá trị của Q khi /a/=5
a) Rút gọn
\(Q=\dfrac{a^3-3a^2+3a-1}{a^2-1}\)
= \(\dfrac{a^3-1-3a^2+3a}{\left(a-1\right)\left(a+1\right)}\)
= \(\dfrac{\left(a-1\right)\left(a^2+a+1\right)-3a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}\)
= \(\dfrac{\left(a-1\right)\left(a^2-2a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
= \(\dfrac{\left(a-1\right)^2}{a+1}\)
b)
Tìm giá trị của Q khi |a|=5
**Với a = 5 ta có:
Q= \(\dfrac{\left(5-1\right)^2}{5+1}=\dfrac{4^2}{6}=\dfrac{16}{6}=\dfrac{8}{3}\)
** Với a= -5 ta có:
Q= \(\dfrac{\left(-5-1\right)^2}{-5+1}=\dfrac{\left(-6\right)^2}{-4}=\dfrac{36}{-4}=-9\)
\(\dfrac{a^3-3a^2+3a-1}{a^2-1}=\dfrac{\left(a^3-1\right)-\left(3a^2-3a\right)}{\left(a+1\right)\left(a-1\right)}\)\(\dfrac{\left(a-1\right)\left(a^2+a+1\right)-3a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}=\dfrac{\left(a-1\right)\left(a^2-2a+1\right)}{\left(a-1\right)\left(a+1\right)}=\dfrac{\left(a-1\right)\left(a-1\right)^2}{\left(a-1\right)\left(a+1\right)}\)\(\dfrac{\left(a-1\right)^2}{a+1}\)
Khi |a|=5
a=5\(\Leftrightarrow\dfrac{\left(a-1\right)^2}{a-1}=\dfrac{\left(5-1\right)^2}{5-1}=4\)
a=-5\(\Leftrightarrow\dfrac{\left(a-1\right)^2}{a-1}=\dfrac{\left(-5-1\right)^2}{-5-1}=-6\)
A=(\(\frac{a^2}{a^3-4a}\)+\(\frac{6}{6-3a}\)+\(\frac{1}{a+2}\)) : (\(\frac{a-2}{a+1}\)-\(\frac{a-1}{a+2}\))
1) rút gọn A
2) tìm các giá trị của a để A<0
3) tìm các giá trị của a để sao cho biểu thức A nhận giá trị nguyên
Cho biểu thức: \(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
a)Rút gọn A
b) Tìm giá trị của a để biểu thức A đạt giá trị lớn nhất.
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)
Mong Idol pro giải thích hộ em chỗ này :((
À dạ thôi oke, em hiểu rồi((: