Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Stephanie Lie

Những câu hỏi liên quan
khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Khánh Linh Đỗ
Xem chi tiết
Kiều Vũ Linh
30 tháng 10 2023 lúc 15:27

(x - y)(x² + y²) - (x⁴y - xy⁴) : xy

= x³ + xy² - x²y - y³ - x³ + y³

= (x³ - x³) + (-y³ + y³) + xy² - x²y

= xy² - x²y

Nguyen Ha Phuong
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
Truc Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2021 lúc 21:31

1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)

\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)

\(=\dfrac{1}{3}x^6y^{10}\)

2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)

\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)

\(=-\dfrac{9}{2}x^4y^4\)

3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)

\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)

\(=\dfrac{1}{54}x^7y^{14}\)

Hoàng Đức Thắng
Xem chi tiết
Hoàng Đức Thắng
20 tháng 2 2022 lúc 23:08

ai giúp em vs

vũ tiền châu
Xem chi tiết
khánhchitt3003
20 tháng 11 2017 lúc 15:04

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)

Trang Lê
Xem chi tiết
Trần Hải Nam
Xem chi tiết
when the imposter is sus
25 tháng 8 2023 lúc 16:38

1)

xy + x - 4y = 12

x + y(x - 4) = 12

y(x - 4) = 12 - x

\(y=\dfrac{-x+12}{x-4}\)

Vì \(x,y\inℕ\) nên

\(\left(-x+12\right)⋮\left(x-4\right)\)

\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)

\(16⋮\left(x-4\right)\)

\(\left(x-4\right)\inƯ\left(16\right)\)

\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)

\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)

\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)

\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

2)

(2x + 3)(y - 2) = 15

\(\left(2x+3\right)\inƯ\left(15\right)\)

\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Ta lập bảng

2x + 3 1 -1 3 -3 5 -5 15 -15
y - 2 15 -15 5 -5 3 -3 1 -1
(x; y) (-1; 17) (-2; -13) (0; 7) (-3; -3) (1; 5) (-4; -1) (6; 3) (-9; 1)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)

Trần Hải Nam
24 tháng 8 2023 lúc 19:52

các thầy cô ơi giúp em vs ạ mai em phải nộp r ạ!!!

 

Xem chi tiết

a, \(xy\) + 4\(x\) + \(y\) = 6

  \(xy\) + y + 4\(x\) + 4 = 10

(\(xy\)+y) + (4\(x\) + 4) = 10

y(\(x\) + 1) + 44(\(x\) + 1) =10

  (\(x\) + 1)(y + 4) = 10

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(x+1\) -10 -5 -2 -1 1 2 5 10
\(x\)  -11 -6 -3 -2 0 1 4 9
y + 4  -1 -2 -5 -10 10 5 2 1
y  -5 -6 -9 -14 6 1 -2 -3

Từ bảng trên ta có các cặp \(x\) , y nguyên thỏa mãn đề bài là:

(\(x\); y) =(-11; -5); ( -6; -6); (-3; -9); (-2; -14); (0; 6); (1; 1); (4; -2); (9; - 3)

 

b, \(xy\) - 2\(x\) = y - 3

   \(x\)y - y - 2\(x\) + 2 = -1

 (\(x\)y - y) - (2\(x\) - 2) = -1

 y(\(x\) - 1) - 2(\(x\) -1) = -1

    (\(x\) - 1)(y -2) = -1

     ⇔ (1-\(x\))(y-2) =1

     Ư(1) = {-1; 1}

Lập bảng ta có: 

\(1-x\) -1 1
\(x\)  2  0
y- 2 -1 1
y 1 3

 

Theo bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:

(\(x\); y) = (2; 1); (0; 3)

 

c, 2\(xy\) + \(x\) + y = 4

   (2\(xy\) + y) + \(x\) = 4

    y(2\(x\) +1) = 4 - \(x\) 

   y = (4-\(x\)) : (2\(x\) +1); y \(\in\) Z ⇔ 4 - \(x\) ⋮ 2\(x\) + 1 ⇔ 2 \(\times\)( 4 - \(x\))⋮ 2\(x\)+1

⇔ 8 - 2\(x\) ⋮ 2\(x\) + 1 ⇔ -2\(x\) - 1 + 9 ⋮ 2\(x\) + 1 ⇔ -(2\(x\)+1) +9⋮ 2\(x\) +1

⇔ 9 ⋮ 2\(x\) + 1 ⇔ ( 2\(x\) + 1)  \(\in\) { -9; -3; -1; 1; 3; 9}

⇒ \(x\) \(\in\) { -5; -2; -1; 0; 1; 4} 

    y \(\in\) { -1; -2; -5; 4; 1; 0}

Vậy các cặp \(x\); y nguyên thỏa mãn đề bài là:

(\(x\); y) = (-5; -1); (-2; -2); ( -1; -5); (0; 4); (1;1); (4; 0)