Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Hương Giang
Xem chi tiết
Akai Haruma
17 tháng 9 2023 lúc 17:52

Lời giải:

a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$

$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.

$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$

$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$

d. 

$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$

$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$

$=-x^2y+4x^2-2xy^2-10x$

$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$

Đào Nguyễn Minh Hà
Xem chi tiết
Đào Nguyễn Minh Hà
31 tháng 12 2021 lúc 8:35

help me !!!

Khách vãng lai đã xóa
Nguyễn Anh Tuấn
Xem chi tiết
Hacker lỏd
Xem chi tiết

Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)

=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)

\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)

\(=y^2+6y+9-88=\left(y+3\right)^2-88\)

Để phương trình có nghiệm nguyên thì Δ phải là số chính phương

=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)

=>\(\left(y+3\right)^2-k^2=88\)

=>(y+3-k)(y+3+k)=88

=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}

TH1: y+3-k=1 và y+3+k=88

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH2: y+3-k=88 và y+3+k=1

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH3: y+3-k=-1 và y+3+k=-88

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH4: y+3-k=-88 và y+3+k=-1

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH5: y+3-k=2 và y+3+k=44

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH6: y+3-k=44 và y+3+k=2

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH7: y+3-k=-2 và y+3+k=-44

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH8: y+3-k=-44 và y+3+k=-2

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH9: y+3-k=4 và y+3+k=22

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH10: y+3-k=22 và y+3+k=4

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH11: y+3-k=-4 và y+3+k=-22

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH12: y+3-k=-22 và y+3+k=-4

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH13: y+3-k=8 và y+3+k=11

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH14: y+3-k=11 và y+3+k=8

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH15: y+3-k=-8 và y+3+k=-11

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

TH16: y+3-k=-11 và y+3+k=-8

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

anh_hung_lang_la
Xem chi tiết
Yen Nhi
8 tháng 4 2022 lúc 21:36

`Answer:`

a. Thay `x=2` và `y=9` vào biểu thức `A`, ta được:

\(A=2.2^2-\frac{1}{3}.9=2.4-\frac{1}{3}.9=8-3=5\)

b. Thay `x=-1/2` và `y=2/3` vào biểu thức `P`, ta được:

\(P=2.\left(-\frac{1}{2}\right)^2+3.\left(-\frac{1}{2}\right).\left(\frac{2}{3}\right)+\left(\frac{2}{3}\right)^2=2.\frac{1}{4}+3.\left(-\frac{1}{2}\right).\left(\frac{2}{3}\right)+\frac{4}{9}=\frac{1}{2}+\left(-1\right)+\frac{4}{9}=-\frac{1}{18}\)

Khách vãng lai đã xóa
Dương Gia Huy
Xem chi tiết
ILoveMath
10 tháng 1 2022 lúc 21:46

x,y∈Z không bạn

ILoveMath
10 tháng 1 2022 lúc 21:51

\(3xy+x-3y=5\\ \Rightarrow x\left(3y+1\right)-3y-1=5-1\\ \Rightarrow x\left(3y+1\right)-\left(3y-1\right)=4\\ \Rightarrow\left(x-1\right)\left(3y-1\right)=4\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,3y-1\in Z\\x-1,3y-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\end{matrix}\right.\)

Ta có bảng:

x-1124-1-2-4
3y-1421-4-2-1
x2350-1-3
y\(\dfrac{5}{3}\left(loại\right)\)1\(\dfrac{2}{3}\left(loại\right)\)-1\(-\dfrac{1}{3}\left(loại\right)\)0

Vậy \(\left(x,y\right)\in\left\{\left(3;1\right);\left(0;-1\right);\left(-3;0\right)\right\}\)

 

Hủ
Xem chi tiết
Lê Tâm Thư
6 tháng 3 2018 lúc 22:31

I don't know

Sakura
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 10:27

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~