Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Như Thuỷ
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2020 lúc 19:51

\(\Leftrightarrow\left|\frac{x^2-mx+4}{x^2+x+4}\right|\ge\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\frac{x^2-mx+4}{x^2+x+4}\ge\frac{1}{2}\\\frac{x^2-mx+4}{x^2+x+4}\le-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\left(x^2-mx+4\right)\ge x^2+x+4\\2\left(x^2-mx+4\right)\le-x^2-x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-\left(2m+1\right)x+4\ge0\left(1\right)\\3x^2-\left(2m-1\right)x+12\le0\left(2\right)\end{matrix}\right.\)

Xét (2), do \(a=3>0\) nên ko tồn tại m để (2) thỏa mãn với mọi x

Xét (1), để BPT đúng với mọi x

\(\Leftrightarrow\Delta\le0\Leftrightarrow4m^2+4m-15\le0\)

\(\Rightarrow-\frac{5}{2}\le m\le\frac{3}{2}\)

Vua Phá Lưới
Xem chi tiết
missing you =
8 tháng 3 2022 lúc 15:18

\(bpt\Leftrightarrow\left(\dfrac{x^2+x+4}{x^2-mx+4}\right)^2-2^2\le0\)

\(\Leftrightarrow\left(\dfrac{x^2+x+4}{x^2-mx+4}-2\right)\left(\dfrac{x^2+x+4}{x^2-mx+4}+2\right)\le0\left(1\right)\)

\(bpt\) \(đúng\forall x\in R\Leftrightarrow x^2-mx+4\ne0\)

\(hay:x^2-mx+4=0\) \(vô\) \(nghiệm\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow m^2-16< 0\Leftrightarrow-4< m< 4\)(1)

\(\Rightarrow x^2-mx+4>0\left(\forall x\in R\right)\)

\(\left\{{}\begin{matrix}x^2+x+4>0\\x^2-mx+4>0\end{matrix}\right.\)\(\Rightarrow\dfrac{x^2+x+4}{x^2-mx+4}+2>0\left(\forall x\in R\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow\left(\dfrac{x^2+x+4}{x^2-mx+4}-2\right)\le0\)

\(\Leftrightarrow\dfrac{x^2+x+4-2x^2+2mx-8}{x^2-mx+4}\le0\)

\(\Leftrightarrow-x^2+x\left(1+2m\right)-4\le0\)

\(\Leftrightarrow x^2-x\left(2m+1\right)x+4\ge0\)

\(\Leftrightarrow\Delta\le0\Leftrightarrow\left(2m+1\right)^2-16\le0\Leftrightarrow\dfrac{-5}{2}\le m\le\dfrac{3}{2}\)(2)

từ (1)(2)\(\Rightarrow\dfrac{-5}{2}\le m\le\dfrac{3}{2}\)

Nhi Nhi
Xem chi tiết
Bách Bách
Xem chi tiết
Khánh Phan Bá Hoàng
Xem chi tiết
Pham Quang Huy
Xem chi tiết
alibaba nguyễn
10 tháng 12 2019 lúc 13:31

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

Khách vãng lai đã xóa
alibaba nguyễn
10 tháng 12 2019 lúc 13:39

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

Khách vãng lai đã xóa
nguyễn minh đức
Xem chi tiết
Minh Nguyen
3 tháng 4 2020 lúc 20:58

a) \(ĐKXĐ:\hept{\begin{cases}x\ne3\\x\ne\pm2\end{cases}}\)

b) \(D=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right)\div\left(\frac{x-3}{2-x}\right)\)

\(\Leftrightarrow D=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2-x}{x-3}\)

\(\Leftrightarrow D=\frac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2+x\right)\left(x-3\right)}\)

\(\Leftrightarrow D=\frac{4x^2+8x}{\left(x+2\right)\left(x-3\right)}\)

\(\Leftrightarrow D=\frac{4x}{x-3}\)

c) Để D = 0

\(\Leftrightarrow\frac{4x}{x-3}=0\)

\(\Leftrightarrow4x=0\)

\(\Leftrightarrow x=0\)

Vậy để D = 0 \(\Leftrightarrow\)x = 0

d) Khi \(\left|2x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=5\\1-2x=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=-2\left(ktm\right)\end{cases}}\)

Vậy khi \(\left|2x-1\right|=5\Leftrightarrow D\in\varnothing\)

Khách vãng lai đã xóa
Trần Hoàng Bích Phượng
Xem chi tiết
tnmq
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 1 lúc 22:04

BPT đã cho vô nghiệm khi và chỉ khi BPT \(f\left(x\right)\le0\) nghiệm đúng với mọi x

TH1: \(\left\{{}\begin{matrix}2m^2+m-6=0\\2m-3=0\end{matrix}\right.\) \(\Rightarrow m=\dfrac{3}{2}\)

TH2: \(\left\{{}\begin{matrix}2m^2+m-6< 0\\\Delta=\left(2m-3\right)^2+4\left(2m^2+m-6\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m-6< 0\\12m^2-8m-15\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< \dfrac{3}{2}\\-\dfrac{5}{6}\le m\le\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{6}\le m< \dfrac{3}{2}\)

Kết hợp 2 trường hợp ta được \(-\dfrac{5}{6}\le m\le\dfrac{3}{2}\)