Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
👾thuii
Xem chi tiết
Toru
11 tháng 11 2023 lúc 22:33

Có: 1n + 2n + 3n + 4n

= (1 + 2 + 3 + 4)n

= 10n

Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)

Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.

BÍCH THẢO
11 tháng 11 2023 lúc 22:26

Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.

Ta có: 1n + 2n + 3n + 4n = 10n

Để 10n chia hết cho 5, ta cần n chia hết cho 5.

Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.

 ⇒ Các số tự nhiên n chia hết cho 5.

--thodagbun--

Đỗ Đức Hà
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 17:52

Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$

Nếu $n=4k$ thì:

$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$

$=1+16^k+81^k+16^{2k}$

$\equiv 1+1+1+1\equiv 4\pmod 5$

---------------

Nếu $n=4k+1$

$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$

$=1+16^k.2+81^k.3+16^{2k}.4$

$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$

Nếu $n=4k+2$

$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$

$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$

$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$

Nếu $n=4k+3$

$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$

$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$

$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$

Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$

BÍCH THẢO
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2023 lúc 20:16

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

Chip Chep :))) 😎
Xem chi tiết
boi đz
18 tháng 8 2023 lúc 8:38

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

Duong Duy
18 tháng 8 2023 lúc 8:51

nhớ nha

 

Duong Duy
18 tháng 8 2023 lúc 8:53

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

phan thị thu uyên
Xem chi tiết
Thu An
Xem chi tiết
Hoàng Anh Tuấn
17 tháng 10 2015 lúc 17:26

n + 5 : hết cho n - 2

=> n - 2 + 7 : hết cho n - 2

=> 7 : hết cho n - 2

=> n - 2 thuộc { 1 ; 7} tự tính n

2n + 9 : hết cho n + 1

=> (2n+9) - 2(n+1) : hết cho n + 1

=> 7 : hết cho n + 1

tương tự câu 1

2n + 1 : hêt cho 6-n

=> (2n+1) + 2(6 - n) : hết cho 6 - n

=> 13 : hết cho 6 - n

tương tự câu 1,2

3n + 1 : hết ccho 11 - 2n

=> 2(3n + 1) + 3(11-2n) : hết cho 11 - 2n

=> 35 : hết cho 11 - 2n

tượng tự 1,2,3

3n + 5 : hết cho 4n + 2

=> 4(3n+5) - 3(4n+2) : hết cho 4n + 2

=> 14 : hết cho 4n + 2 

tương tự 1,2,3,4

Đinh Phan Như Ngọc
Xem chi tiết
dam quang tuan anh
3 tháng 12 2017 lúc 22:06

Vì 3n chia hết cho 5-2n 
=>2.3n+3(5-2n)=15 chia hết cho 5-2n 
=>5-2n thuộc Ư(15)={±1;±3;±5;±15} 
Mặt khác:5-2n≤5(do n≥0) 
=>5-2n thuộc {-15;-5;-3;-1;1;3;5} 
=>n thuộc {10;5;4;3;2;1;0} 

Nguyễn Phương Thảo
Xem chi tiết
Thủy BỜm
Xem chi tiết
le thi khanh huyen
Xem chi tiết
Huỳnh Diệu Bảo
9 tháng 1 2016 lúc 22:41

1) 2n+7=2(n+1)+5

để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1

=> n+1\(\in\) Ư(5) => n\(\in\){...............}

bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa

Từ bài 2-> 4 áp dụng như bài 1

Dương Thanh Hà
4 tháng 1 2021 lúc 17:12

Ta có 2n+7=2(n+1)+5

Vì 2(n+1

Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1

Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}

Lập bảng n+1 I 1 I 5

                  n   I 0 I 4

Vậy n "thuộc tập hợp" {0;4}

Khách vãng lai đã xóa