hàm số y=(-2+m)x+3m đồng biến khi nào
a/ cho hàm số: y=(-3m - 2)x2. Tìm m để hàm số nghịch biến khi x < 0
b/ cho hàm số: y=(m2 - 2m + 3)x2. Xác định tính biến thiên của hàm số
c/ cho hàm số: y=(2m + 3)x2. Tìm m để hàm số đồng biến khi x>0
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Với giá trị nào của m thì hàm số y = (2 – 3m)x + 5m là hàm số đồng biến?
A. m > 2 3
B. m > - 2 3
C. m < 2 3
D. m < - 2 3
Đáp án là C
Hàm số y = (2 – 3m)x + 5m là hàm số đồng biến khi
2 - 3m > 0 ⇔ m < 2/3
Cho hàm số y = ( \(m^2\) + 2021 ) \(x^2\). Kết luận nào sau đây đúng?
A. Hàm số nghịch biến khi x <0
B. Hàm số đồng biến khi x <0
C. Hàm số nghịch biến khi x > 0
D. Hàm số đồng biến khi x \(\le\) 0
cho hàm số y=f(x)=(m^2+1)x^2 hàm số trên đồng biến khi nào ? nghịch biến khi nào
m^2+1>=1>0
=>Hàm số luôn đồng biến với mọi m
1) hàm số \(y=\dfrac{x+m^2}{x+4}\) đồng biến trên từng khoảng xác định
2) hàm số \(y=\dfrac{x+2}{x+3m}\) đồng biến trên khoảng (\(-\infty\),-6)
1: TXĐ: D=R\{-4}
\(y=\dfrac{x+m^2}{x+4}\)
=>\(y'=\dfrac{\left(x+m^2\right)'\left(x+4\right)-\left(x+m^2\right)\left(x+4\right)'}{\left(x+4\right)^2}\)
\(=\dfrac{x+4-x-m^2}{\left(x+4\right)^2}=\dfrac{4-m^2}{\left(x+4\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì
\(\dfrac{4-m^2}{\left(x+4\right)^2}>0\forall x\in TXĐ\)
=>\(4-m^2>0\)
=>\(m^2< 4\)
=>-2<m<2
Với giá trị nào của m thì hàm số y = x 3 + ( m + 1 ) x 2 - ( 3 m + 2 ) x + 4 đồng biến trên khoảng ( 0 ; 1 )
A. m ≤ - 2 3
B. m ≥ - 2 3
C. m ≤ 3
D. m ≥ 3
Đáp án C
Ta có: y’ = 3x2 + 2(m+1)x – (3m+2)
Hàm số đồng biến trên khoảng (0;1)
3x2 + 2(m+1)x – (3m+2) ≥ 0 ∀ x ∈ (0;1)
⇔ m ≤ − 3 x 2 + 2 x − 2 2 x − 3 ∀ x ∈ (0;1)
Xét hàm số: g = − 3 x 2 + 2 x − 2 2 x − 3 D =(0;1)
Ta có: g’ = − 6 x 2 − 18 x − 2 ( 2 x − 3 ) 2
ð g’ = 0 ⇔ x = 9 ± 93 6 (không thoản mãn)
Ta có bảng biến thiên
Vậy với m ≤ 3 hàm số đồng biến trên khoảng (0;1)
cho hàm số y = 2x2. hàm số đồng biến khi nào, nghịch biến khi nào
cho hàm số y = -3x2 hàm số đồng biến khi nào, nghịch biến khi nào
Bài 1 Cho hàm số :y=(3m -2)x2 (m khác \(\frac{2}{3}\) )
a) Tìm điều kiện để hàm số đồng biến khi x>0
b)Tìm điều kiện để hàm số nghịch biến khi x>0
a) Khi \(x>0\)thì hàm số đã cho đồng biến \(\Leftrightarrow3m-2>0\)
\(\Leftrightarrow3m>2\)\(\Leftrightarrow m>\frac{2}{3}\)
b) Khi \(x>0\)thì hàm số đã cho nghịch biến \(\Leftrightarrow3m-2< 0\)
\(\Leftrightarrow3m< 2\)\(\Leftrightarrow m< \frac{2}{3}\)
cho y=1/3x³-(m-2)x²+(m²-3m+2)x+3. tìm m để a)Hàm số đồng biến với mọi x thuộc (2;dương vô cùng) b)Hàm số đồng biến với mọi x thuộc (trừ âm vô cùng;0) c)Hàm số nghịch biến với mọi x thuộc (-2;3)
\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)
a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)
Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)
TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)
Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m
b.
Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x< 0\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)
TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Kết hợp lại ta được: \(m\ge2\)
c.
Hàm số nghịch biến trên khoảng đã cho khi và chỉ khi:
\(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-4m+3\le0\) ; \(\forall x\in\left(-2;3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1\le-2< 3\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\f\left(-2\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\4+4\left(m-2\right)+m^2-4m+3\le0\\9-6\left(m-2\right)+m^2-4m+3\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2\le1\\m^2-10m+24\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn