đồ thị của hàm số y=2x- 1 song song với đường thẳng
Cho hàm số y = ax-1. Tính hệ số góc của hàm số biết
a) Đồ thị hàm số vuông góc với đường thẳng y = 2x+3
b) Đồ thị hàm số song song với đường thẳng y = -5x+7
c) Đồ thị hàm số trùng với đường thẳng y = 5x-1
Bài 2: Hãy xác định hàm số y =ax + b biết:
a) Đồ thị hàm số song song với đường thẳng y = 2x – 3 và đi qua A ( 1; 1)
b) Đồ thị hàm số song song với đường thẳng y = 2x và cắt trục hoành tại điểm có hoành độ bằng -3
c) Đồ thị hàm số song song với đường thẳng y = -3x và cắt trục tung tại điểm có tung độ bằng 2.
d) Đồ thị hàm số đi qua điểm P ( 2;1 ) và Q ( -1; 4).
a: Vì (d) song song với y=2x-3 nên a=2
Vậy: (d): y=2x+b
Thay x=1 và y=1 vào (d), ta được:
b+2=1
hay b=-1
b: Vì (d) song song với y=2x nên a=2
Vậy: (d): y=2x+b
Thay x=-3 và y=0 vào (d), ta được:
b-6=0
hay b=6
Xác định hàm số bậc nhất y=ax+b biết đồ thị hàm số đi qua A(-1,5) và song song với đồ thị hàm số y=3x+1 biết phương trình của đồ thị hàm số đi qua M(-1,4) và song song với đường thẳng y=2x-1.
đồ thị của hàm số y=2x- 1 song song với đường thẳng
a) Xác định hàm số y=ax+b biết rằng đồ thị của hàm số song song với đường thẳng y=2x và đi qua điểm (1;-1).
b) Vẽ đồ thị (d1) của hàm số với a,b vừa tìm được.
c) Tìm tọa độ giao điểm E của đường thẳng (d1) với đường thẳng: y=\(\frac{1}{2}x+1\) (d2)
d) Tính góc tạo bởi đường thẳng (d1) với trục Ox (Làm tròn đến độ)
(Mình Cần Gấp!)
Do (d1) song song với đường thẳng y = 2x nên a = 2
(d1): y = 2x + b
Thay tọa độ điểm (1; -1) vào (d) ta được:
2.1 + b = -1
⇔ b = -1 - 2
⇔ b = -3
Vậy (d1): y = 2x - 3
b) x = 0 ⇒ y = -3
*) Đồ thị:
c) Phương trình hoành độ giao điểm của (d1) và (d2):
2x - 3 = 1/2 x + 1
⇔ 2x - 1/2 x = 1 + 3
⇔ 3/2 x = 4
⇔ x = 4 : 2/3
⇔ x = 8/3
⇒ y = 2.8/3 - 3 = 7/3
Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)
d) Ta có:
Gọi a là góc cần tính
⇒ tan(a) = 2
⇒ a ≈ 63⁰
(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)
a)
Đồ thị hàm số (d1)// đường thẳng `y=2x`
=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)
=> `y=2x+b`
Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:
`-1=2.1+b`
=> `b=-3`
Vậy hàm số `y=ax+b` là `y=2x-3`
c)
Ta có PTHĐGĐ giữa `d_1` và `d_2`:
\(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)
Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)
$HaNa$
Bài 1: Cho hàm số y= (m -3).x+m+2
a) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ = -3
b) Tìm m để đồ thị hàm số song song với đường thẳng y= -2x+1
c) Tìm m để đồ thị hàm số vuông góc với đường thẳng y= -2x-3
Bài 2: Đồ thị hàm số y= ax+b (a ≠ 0) và đường thẳng y = a'x+ b' ( b ≠ 0). Khi a.a'= -1
(mink đag cần gấp)
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
Tìm hàm số có đồ thị là đường thẳng song song với đồ thị hàm số \(y = - 2x + 10\).
Gọi hàm số cần tìm là \(y = ax + b\).
Đồ thị hàm số là đường thẳng \(d:y = ax + b\). Vì đường thẳng \(d\) song song với đường thẳng \(y = - 2x + 10\) nên ta có: \(\left\{ \begin{array}{l}a = - 2\\b \ne 10\end{array} \right.\).
Vậy hàm số cần tìm là \(y = - 2x + b\) với \(b \ne 10\).
Cho hàm số y = (m-1)x + 2 (1)
a) Tìm m để hàm số (1) là hàm số đồng biến;
b) Tìm m để đồ thị hàm số (1) là đường thẳng song song với đường thẳng y = 2x;
c) Tìm m để đồ thị của hàm số (1) đồng quy với hai đường thẳng y-3= 0 và y = x-1
d) Chứng minh đồ thị hàm số (1) luôn đi qua điểm cố định với mọi m.
a: Để hàm số đồng biến thì m-1>0
hay m>1
Cho hàm số: y = 2x + 3 (1)
1. Vẽ đồ thị hàm số (1) 2. Xác định m để đường thẳng (d): y = (2m – 1)x – 5m song song với đồ thị của hàm số (1). 3. Xác định m để đồ thị hàm số (1) và đường thẳng (d) cắt nhau tại một giao điểm có hoành độ dương.2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)