choΔABC có góc A= 90, M là trung điểm của cạnh BC chứng minh
a, ΔAMC = ΔDMB
b,AC = BD
c,AB ⊥ BD
Cho tam giác ABC vuông tại A, M là trung điểm của BC. D∈tia đối của tia MA, MD=MA.
a, ΔAMC=ΔDMB
b, Góc ABD=90 độ
c, AM=1/2BC
a . xét Δ AMC và Δ DMB có
CM = BM (M là trung điểm của BC )
∠AMC = ∠BMD (hai góc đối đỉnh )
AM = DM (gt)
=> ΔAMC = ΔDMB (c - g - c)
Cho tam giác ABC vuông tại A(AB < AC) có M là trung điểm của BC. Trên tia AM lấy điểm D sao cho AM = MD.
a) Chứng minh ΔAMC=ΔDMB .
b) Chứng minh BD // AC và AD = BC.
c) Gọi K là trung điểm của AC. Chứng minh MK⊥BD.
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
\(\widehat{BMD}=\widehat{AMC}\left(đối.đỉnh\right)\)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: \(\widehat{DBM}=\widehat{MCA}\left(\Delta AMC=\Delta DMB\right)\)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\)
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
\(AM=MC\left(=\dfrac{1}{2}AD=\dfrac{1}{2}BC\right)\)
=> ΔAMK=ΔCMK(c.c.c)
=> \(\widehat{MKA}=\widehat{MKC}=180^0:2=90^0\Rightarrow MK\perp AC\)
Mà AC//BD(ABDC là hình chữ nhật)
\(\Rightarrow MK\perp BD\)
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
ˆBMD=ˆAMC(đối.đỉnh)BMD^=AMC^(đối.đỉnh)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: ˆDBM=ˆMCA(ΔAMC=ΔDMB)DBM^=MCA^(ΔAMC=ΔDMB)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà ˆBAC=900BAC^=900
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
ˆBMD=ˆAMC(đối.đỉnh)BMD^=AMC^(đối.đỉnh)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: ˆDBM=ˆMCA(ΔAMC=ΔDMB)DBM^=MCA^(ΔAMC=ΔDMB)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà ˆBAC=900BAC^=900
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
Bài 2: Cho tam giácABC có AB = AC, M là trung điểm của BC.
a) Chứng minh ΔAMB = ΔAMC.
b) Trên cạnh AB lấy điểm D. Từ D kẻ đường vuông góc với AM tại K và kéo dài cắt cạnh AC tại E. Chứng minh AD=AE
c) Trên tia đối của tia ED lấy điểm F sao cho EF = MC, gọi H là trung điểm của EC. Chứng minh ba điểm M,H,F thẳng hàng
giúp mk vs mai nộp bài rồi
Cho ∆ ABC có AB = AC , kẻ BD Vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB ). Gọi O là giao điểm của BD và CE. Chứng minh
a) BD = CE
b)∆ OEB = ∆ ODC
c) AO là tia phân giác của góc BAC.
d) CMR: AO đi qua trung điểm của BC.
Cho ΔABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MÀ lấy điểm D sao cho MD=MA
a. Chứng minh: ΔAMC= ΔDMB
b. Tính số đo góc ABD
c. So sánh độ dài AM và BC
choΔABC (90 độ); BD là phân giác của góc B (DϵAC). trên tia BC lấy điểm E sao cho BA=BE
a, chứng minh ΔBAD=ΔBED
b)chứng minh BD là đường trung trực của AE.
c)Kẻ AH vuông góc BC . so sánh EH và EC
b,xét tam giác BAE có BA=BE(Gt)
⇒
⇒tam giac BAE Cân tại B
Mà BD là dường phân giác
⇒
⇒BD đồng thời là đường trung trực của AE
C suy ra góc HAE bằng góc DAE
xét tam giác HAE và tam giác KAE:
.AE là cạnh huyền chung
.góc HAE bằng góc DAE
suy ra :tam giác HAE = tam giác KAE( ch-gn)
suy ra EH=EK (1)
Ta lại có tam giác EKC vuông tại K nên:
EK<EC( cạnh góc vuông bé hơn cạnh huyền) (2)
Từ (1) và (2) suy ra EH<EC
làm được mỗi 2 câu ko bt có đúng ko
Tam giác ABC vuông tại A, trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: ΔAMC=ΔDMB
b) Chứng minh BD // AB và AD=AC
c) Gọi K là trung điểm AC. C/M CK vuông góc BD
d) Kẻ AH vuông BC tại H. vẽ O sao cho M là trung điểm HO. c/m góc DCO=ACB
Tứ giác ABCD có AC vuông góc BD tại H và HB=HD.EF là trung điểm AB,BC qua E kẻ đường Vuông góc CD cắt BD tại I chứng minh
a) I là trực tâm của tam giác HEF
b) FI vuông góc AD
Tứ giác ABCD có AC vuông góc BD tại H và HB=HD.EF là trung điểm AB,BC qua E kẻ đường Vuông góc CD cắt BD tại I chứng minh
a) I là trực tâm của tam giác HEF
b) FI vuông góc AD
a: Xét ΔDBC có BH/BD=BF/BC
=>HF//DC
=>EI vuông góc HF(1)
Xét ΔBAC có BE/BA=BF/BC
nên EF//AC
=>EF vuông góc HI(2)
Từ (1), (2) suy ra I là trực tâm của ΔHEF
b: I là trực tâm của ΔHEF
=>FI vuông góc EH
Xét ΔBAD có BE/BA=BH/BD
nên EH//AD
=>FI vuông góc AD