Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
So Yummy
Xem chi tiết
long bảo
Xem chi tiết
long bảo
12 tháng 12 2021 lúc 15:35

giúp với mọi ng

 

tructiepgame
Xem chi tiết
Đỗ Yến Đan
Xem chi tiết
Kim Taehyung
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 2 2021 lúc 22:11

a) Xét (O) có 

ΔBMA nội tiếp đường tròn(B,M,A∈(O))

BA là đường kính(gt)

Do đó: ΔBMA vuông tại M(Định lí)

Xét (O) có 

AB là đường kính của (O)(gt)

nên O là trung điểm của AB

Xét ΔBMA có 

O là trung điểm của AB(gt)

C là trung điểm của AM(gt)

Do đó: OC là đường trung bình của ΔBMA(Định nghĩa đường trung bình của tam giác)

⇒OC//BM và \(OC=\dfrac{BM}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: OC//BM(cmt)

BM⊥BA(ΔBMA vuông tại M)

Do đó: OC⊥AM(Định lí 2 từ vuông góc tới song song)

Xét tứ giác OCNB có

\(\widehat{OCN}\) và \(\widehat{OBN}\) là hai góc đối

\(\widehat{OCN}+\widehat{OBN}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OCNB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét ΔNBA vuông tại B và ΔOCA vuông tại C có

\(\widehat{OAC}\) chung

Do đó: ΔNBA∼ΔOCA(g-g)

\(\dfrac{AB}{AC}=\dfrac{AN}{AO}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AC\cdot AN=AO\cdot AB\)(đpcm)

c) Ta có: OC⊥AN(cmt)

mà E∈OC(gt)

nên EC⊥NA

Xét ΔNEA có 

EC là đường cao ứng với cạnh NA(cmt)

AB là đường cao ứng với cạnh NE(gt)

EC cắt AB tại O(gt)

Do đó: O là trực tâm của ΔNEA(Định lí ba đường cao của tam giác)

⇒NO⊥AE(đpcm)

Trang Ngô
Xem chi tiết
Trung Sunset
Xem chi tiết
Ling ling 2k7
Xem chi tiết
Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 21:27

a) Xét (O) có 

\(\widehat{CDA}\) là góc nội tiếp chắn \(\stackrel\frown{CA}\)

\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{CA}\)

Do đó: \(\widehat{CDA}=\widehat{ABC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{MDA}=\widehat{MBC}\)

Xét ΔMAD và ΔMCB có 

\(\widehat{MDA}=\widehat{MBC}\)(cmt)

\(\widehat{AMD}\) chung

Do đó: ΔMAD\(\sim\)ΔMCB(g-g)

Suy ra: \(\dfrac{MA}{MC}=\dfrac{MD}{MB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot MB=MC\cdot MD\)(đpcm)