cho a+b+c+d+e=8 và a^2+b^2+c^2+d^2+e^2=16 tìm gtln của e
Cho các sô thực không âm a,b,c,d,e thỏa mãn a+b+c+d+e=2.Tìm GTLN của P=ab+bc+cd+de
Tìm GTLN hoặc GTLN của biểu thức:
a)A=4x2-8x+15
b)B=-x2-8x+5
c)C=-x2+6x+1
d)D=-32+12x+11
e)E=2x2+20x-43
a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11
Vì (2x-2)2luôn lớn hơn hoặc bằng 0
=>A>hoặc =0+11 hay a>hoặc =11
vậy GTNN của A là 11 khi x=1
tìm GTNN của biểu thức A,B,C và GTLN của D,E
A= x2-4x+1
B= 4x2+4x+11
C= (x-1)(x+3)(x+2)(x+6)
D=5-8x-x2
E= 4x-x2+1
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
phần B có bạn làm rồi nha mình không làm nữa
A=x2-4x+1=x2-4x+4-3=(x-2)2-3
Vì (x-2)2\(\ge\)0\(\forall\)x \(\Rightarrow\)(x-2)2-3\(\ge\)-3\(\forall\)x
Vậy minA = -3
C=(x-1)(x+3)(x+2)(x+6)
C=(x-1)(x+6)(x+3)(x+2)
C=(x2+5x-6)(x2+5x+6)
Đặt x2+5x+6=t . Ta có:
C= (t-12).t=t2-12t=t2-12+36-36=(t-6)2-36
C= (x2+5x+6-6)2-36=(x2+5x)2-36
Vì (x2+5x)2\(\ge\)0\(\forall\)x \(\Rightarrow\)(x2+5x)2-36\(\ge\)-36\(\forall\)x
Vậy minC= -36
D=5-8x-x2=-(x2+8x-5)=-(x2+8x+16-21)=-\(\left[\left(x+4\right)^2-21\right]\)
D=-(x+4)2+21=21-(x+4)2
Vì (x+4)2\(\ge\)0\(\forall\)x\(\Rightarrow\)21-(x+4)2\(\le\)21\(\forall\)x
Vậy maxD=21
E=4x-x2+1=-(x2-4x-1)=-(x2-4x+4-5)=-\(\left[\left(x-2\right)^2-5\right]\)=-(x-2)2+5=5-(x-2)2
Vì (x-2)2\(\ge0\forall x\)\(\Rightarrow\)5-(x-2)2\(\le5\forall x\)
Vậy maxE=5
Tìm GTLN của biểu thức:
a) A= 5x- x^2
b) B= x- x^2
c) C= 4x- x^2+ 3
d) D= -x^2+ 6x- 11
e) E= 5- 8x- x^2
f) F= 4x- x^2+ 1
Bài1:Chứng minh rằng:
A=(7+72+73+...+78) chia hết cho 50
Bài2:Tìm x,y thuộc Z biết:
a) (x+5)(y-2)=-6
b)3x+4y-xy=15
Bài3:Cho a,b,c,d,e thuộc Z biết a+b+c+d+e=0 và a+b=c+d=d+e=2.Tính c,d,e
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 2 : Bài giải
a, \(\left(x+5\right)\left(y-2\right)=-6\)
\(\Rightarrow\text{ }\left(x+5\right)\text{ ; }\left(y-2\right)\inƯ\left(-6\right)\)
Ta có bảng :
x + 5 | - 2 | - 3 | - 1 | - 6 |
y - 2 | 3 | 2 | 6 | 1 |
x | - 7 | - 8 | - 6 | - 11 |
y | 5 | 4 | 8 | 3 |
Vậy \(\left(x\text{ ; }y\right)=\left(-7\text{ ; }5\right)\text{ ; }\left(-8\text{ ; }4\right)\text{ ; }\left(-6\text{ ; }8\right)\text{ ; }\left(-11\text{ ; }3\right)\)
Tìm GTNN và GTLN
a,A=(x+2)^2+37
b,B=2.(x-3)^2-30
c,C=(x-1)^2000+/y-2/^2000+2019
d,D=/x+3/+/x-y+4/-10
e,E=-(x+2)^2+37
f,
\(a,A=\left(x+2\right)^2+37\)
\(A_{min}=37\Leftrightarrow\left(x+2\right)^2=0\Rightarrow x+2=0\Leftrightarrow x=-2\)
\(b,B=2\left(x-3\right)^2-30\)
\(B_{min}=-30\Leftrightarrow2\left(x-3\right)^2=0\Rightarrow x-3=0\Leftrightarrow x=3\)
\(e,E=-\left(x+2\right)^2+37\)
\(E_{max}=37\Leftrightarrow-\left(x+2\right)^2=0\Rightarrow x+2=0\Leftrightarrow x=-2\)
Cho a,b,c,d,e thỏa mãn a^2+b^2+c^2+d^2+e^2=a(b+c+d+e). CMR b=c=d=e
Lời giải:
$a^2+b^2+c^2+d^2+e^2=a(b+c+d+e)$
$\Leftrightarrow 4a^2+4b^2+4c^2+4d^2+4e^2-4a(b+c+d+e)=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2-4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4e^2-4ae)=0$
$\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2e)^2=0$
Ta thấy: $(a-2b)^2,(a-2c)^2,(a-2d)^2,(a-2e)^2\geq 0$ với mọi $a,b,c,d,e$ thực
Do đó để tổng của chúng bằng $0$ thì:
$(a-2b)^2=(a-2c)^2=(a-2d)^2=(a-2e)^2=0$
$\Leftrightarrow 2b=2c=2d=2e=a$
$\Rightarrow b=c=d=e$
Cho a,b,c,d,e thỏa mãn a^2+b^2+c^2+d^2+e^2=a(b+c+d+e). CMR b=c=d=e
\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\dfrac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\dfrac{a^2}{4}+b^2\ge ab\)
CMTT ta được: \(\left\{{}\begin{matrix}\dfrac{a^2}{4}+c^2\ge ac\\\dfrac{a^2}{4}+d^2\ge ad\\\dfrac{a^2}{4}+e^2\ge ae\end{matrix}\right.\)
\(\Rightarrow4.\dfrac{a^2}{4}+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(ĐTXR\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)
Tìm GTNN, GTLN. a, A=-3x^2+6x-2 b, B=4-16x^2-8x c, C=2-5x^2-y^2-4xy+2x d, D=1/x^2+2x+3 e, E=-x^2+5x-7
a: \(A=-3\left(x^2-2x+\dfrac{2}{3}\right)\)
\(=-3\left(x^2-2x+1-\dfrac{1}{3}\right)\)
\(=-3\left(x-1\right)^2+1< =1\)
Dấu '=' xảy ra khi x=1
b: \(B=-\left(16x^2+8x-4\right)\)
\(=-\left(16x^2+8x+1-5\right)\)
\(=-\left(4x+1\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-1/4
d: \(x^2+2x+3=\left(x+1\right)^2+2>=2\)
=>E<=1/2
Dấu '=' xảy ra khi x=-1