x^2-5x+6/x^2+7x+12/x^2-4x+4/x^2+3x=
Dùng kĩ thuật tích AC
1) x ^ 2 + 3x + 2
2) x ^ 2 + 4x + 3
3) x ^ 2 + 5x + 4
4) x ^ 2 - 4x + 3
5) x ^ 2 - 4x + 4
6) x ^ 2 - 5x + 4
7) x ^ 2 - 5x + 6
8) x ^ 2 + 6x + 5
9) x ^ 2 - 7x + 10
10) x ^ 2 + 8x + 12
11) x ^ 2 - 8x + 16
12) x ^ 2 + 8x + 15
13) x ^ 2 - 8x + 7
14) x ^ 2 + 9x + 8
15) x ^ 2 - 9x + 14
16) x ^ 2 + 9x + 18
17) x ^ 2 - 9x + 20
18) 2x ^ 2 - 3x + 1
1: \(x^2+3x+2\)
\(=x^2+x+2x+2\)
=x(x+1)+2(x+1)
=(x+1)(x+2)
2: \(x^2+4x+3\)
\(=x^2+x+3x+3\)
=x(x+1)+3(x+1)
=(x+1)(x+3)
3: \(x^2+5x+4\)
\(=x^2+x+4x+4\)
=x(x+1)+4(x+1)
=(x+1)(x+4)
4: \(x^2-4x+3\)
\(=x^2-x-3x+3\)
=x(x-1)-3(x-1)
=(x-1)(x-3)
5: \(x^2-4x+4=x^2-2\cdot x\cdot2+2^2=\left(x-2\right)^2\)
6: \(x^2-5x+4\)
\(=x^2-x-4x+4\)
=x(x-1)-4(x-1)
=(x-1)(x-4)
7: \(x^2-5x+6\)
\(=x^2-2x-3x+6\)
=x(x-2)-3(x-2)
=(x-2)(x-3)
8: \(x^2+6x+5\)
\(=x^2+x+5x+5\)
=x(x+1)+5(x+1)
=(x+1)(x+5)
9: \(x^2-7x+10\)
\(=x^2-2x-5x+10\)
=x(x-2)-5(x-2)
=(x-2)(x-5)
10: \(x^2+8x+12\)
\(=x^2+2x+6x+12\)
=x(x+2)+6(x+2)
=(x+2)(x+6)
11: \(x^2-8x+16=x^2-2\cdot x\cdot4+4^2=\left(x-4\right)^2\)
12: \(x^2+8x+15\)
\(=x^2+3x+5x+15\)
=x(x+3)+5(x+3)
=(x+3)(x+5)
13: \(x^2-8x+7\)
\(=x^2-x-7x+7\)
=x(x-1)-7(x-1)
=(x-1)(x-7)
14: \(x^2+9x+8\)
\(=x^2+x+8x+8\)
=x(x+1)+8(x+1)
=(x+1)(x+8)
15: \(x^2-9x+14\)
\(=x^2-2x-7x+14\)
=x(x-2)-7(x-2)
=(x-2)(x-7)
16: \(x^2+9x+18\)
\(=x^2+3x+6x+18\)
=x(x+3)+6(x+3)
=(x+3)(x+6)
17: \(x^2-9x+20\)
\(=x^2-4x-5x+20\)
=x(x-4)-5(x-4)
=(x-4)(x-5)
18: \(2x^2-3x+1\)
\(=2x^2-2x-x+1\)
=2x(x-1)-(x-1)
=(x-1)(2x-1)
1. \(x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
2. \(x^2+4x+3=\left(x+1\right)\left(x+3\right)\)
3. \(x^2+5x+4=\left(x+1\right)\left(x+4\right)\)
4. \(x^2-4x+3=\left(x-1\right)\left(x-3\right)\)
5. \(x^2-4x+4=\left(x-2\right)^2\)
6. \(x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
7. \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
8. \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
9. \(x^2-7x+10=\left(x-2\right)\left(x-5\right)\)
10. \(x^2+8x+12=\left(x+2\right)\left(x+6\right)\)
11. \(x^2-8x+16=\left(x-4\right)^2\)
12. \(x^2+8x+15=\left(x+3\right)\left(x+5\right)\)
13. \(x^2-8x+7=\left(x-1\right)\left(x-7\right)\)
14. \(x^2+9x+8=\left(x+1\right)\left(x+8\right)\)
15. \(x^2-9x+14=\left(x-2\right)\left(x-7\right)\)
16. \(x^2+9x+18=\left(x+3\right)\left(x+6\right)\)
17. \(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(18.2x^2-3x+1=2x^2-x-2x+1\)
\(=x\cdot\left(2x-1\right)-\left(2x-1\right)=\left(2x-1\right)\left(x-1\right)\)
thực hiện phép tính:
\(\dfrac{x^2-5x+6}{x^2+7x+12}.\dfrac{x^2+3x}{x^2-4x+4}\)
ĐKXĐ: \(x\notin\left\{2;-3;-4\right\}\)
\(\dfrac{x^2-5x+6}{x^2+7x+12}\cdot\dfrac{x^2+3x}{x^2-4x+4}\)
\(=\dfrac{x^2-2x-3x+6}{x^2+3x+4x+12}\cdot\dfrac{x\left(x+3\right)}{\left(x-2\right)^2}\)
\(=\dfrac{x\left(x-2\right)-3\left(x-2\right)}{x\left(x+3\right)+4\left(x+3\right)}\cdot\dfrac{x\left(x+3\right)}{\left(x-2\right)^2}\)
\(=\dfrac{\left(x-3\right)\left(x-2\right)}{\left(x+3\right)\left(x+4\right)}\cdot\dfrac{x\left(x+3\right)}{\left(x-2\right)^2}\)
\(=\dfrac{x\left(x-3\right)}{\left(x-2\right)\left(x+4\right)}\)
Tìm x
a)5x(1/5x-2)+3(6-1/3x2)=12
b)7x(x-2)-5(x-1)=7x2+3
c)2(5x-8)-3(4x-5)=4(3x-4)+11
a) \(5x\left(\frac{1}{5}x-2\right)+3\left(6-\frac{1}{3}x^2\right)=12\)
=> \(x^2-10x+18-x^2=12\)
=> -10x + 18 = 12
=> -10x = -6
=> -5x = -3
=> x = 3/5
b) 7x(x - 2) - 5(x - 1) = 7x2 + 3
=> 7x2 - 14x - 5x + 5 = 7x2 + 3
=> 7x2 - 14x - 5x + 5 - 7x2 - 3 = 0
=> -19x + 2 = 0
=> -19x = -2
=> x = \(\frac{2}{19}\)
c) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
=> 10x - 16 - 12x + 15 = 12x - 16 + 11
=> 10x - 16 - 12x + 15 - 12x + 16 - 11 = 0
=> (10x - 12x - 12x) + (-16 + 15 + 16 - 11) = 0
=> -14x + 4 = 0
=> -14x = -4
=> -7x = -2
=> x = 2/7
Rút gọn:
x^2-5x+6 / x^2+7x+12 | : | x^3-x^2 / x^2+4x | :| x^2-4x+4 / x^2+2x | .| x^2-3x+2 / x^2--6
Nhìn ko hiểu dâu "|" là dấu ngoặc hay dấu giá trị tuyệt đối
Bạn ghi rõ đề bài ra nha ![]()
cái này || ko phải là dấu tuyệt đối đâu mà là phép nhân, chia giua 2 phân số
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
a) -5(x^2 - 3x +1 ) + x ( 1+5x ) =x-2
b) -4x (x-5) +7x (x-4) -3x^2 =12
`@` `\text {Ans}`
`\downarrow`
`a)`
\(-5(x^2 - 3x +1 ) + x ( 1+5x ) =x-2 \)
`=> -5x^2 + 15x - 5 + x + 5x^2 = x - 2`
`=> (-5x^2 + 5x^2) + (15x + x) - 5 = x - 2`
`=> 16x - 5 = x - 2`
`=> 16x - 5 - x + 2 = 0`
`=> (16x - x) + (-5+2) = 0`
`=> 15x - 3 = 0`
`=> 15x = 3`
`=> x = 3 \div 15`
`=> x =`\(\dfrac{1}{5}\)
Vậy, `x =`\(\dfrac{1}{5}\)
`b)`
\(-4x (x-5) +7x (x-4) -3x^2 =12\)
`=> -4x^2 + 20x + 7x^2 - 28x - 3x^2 = 12`
`=> (-4x^2 - 3x^2 + 7x^2) + (20x - 28x) = 12`
`=> -8x = 12`
`=> x = 12 \div (-8)`
`=> x = `\(-\dfrac{3}{2}\)
Vậy, `x =`\(-\dfrac{3}{2}\)
`@` `\text {Kaizuu lv uu}`
giúp mình giải bài toán.......
1)3x-6=5x+2
2)15-x=4x-5
3)x-15=6+4x
4)-12+x=5x-20
5)7x-4=20+3x
6)5x-7=-21-2x
7)x+15=20-4x
8)17-x=7-6x
9)-4|x-2|=-8
10)-7|x+4|=2.(-7)
1) 3x - 6= 5x + 2
5x - 3x = -6 - 2
2x = -8
x = -4
2) 15 - x = 4x - 5
4x + x = 15 + 5
5x = 20
x = 4
Tương tự như trên
1) 3x - 6 = 5x + 2
3x - 5x = 2 + 6
-2x = 8
x = 8 : (-2)
x = -4
2) 15 - x = 4x - 5
-x - 4x = -5 - 15
-5x = -20
x = -20 : (-5)
x = 4